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للخرسانة باستخدام سرعة الموجات فوق  نضغاطنموذج الشبكات العصبية الاصطناعية للتنبؤ بمقاومة الا

 الصوتية
 الخلاصة 

التي أجريت باستخدام الشبكات العصبية الاصطناعية لدراسة مدى  ةيقدم هذا البحث نتائج الدراس      

تأثير تغاير مكونات الخرسانة على سرعة الموجات فوق الصوتية و ايجاد معادلة رياضية للتنبؤ 

بمقاومة الانضغاط للخرسانة. إذ أن المدخلات المقترحة شملت العوامل الرئيسية المؤثرة على سرعة 

السمنت(، \السمنت(، نسبة )الركام\التي تتضمن محتوى السمنت، نسبة )الماءالموجات فوق الصوتية و

المقاس الاقصى للركام وعمر الخرسانة، بينما كانت المخرجات هي سرعة الموجات فوق الصوتية. 

أظهرت النتائج أنه بزيادة عمر الخرسانة، تزداد سرعة الموجات فوق الصوتية. كما أنه بزيادة محتوى 

ي ذلك الى موجة أسرع في قراءات السرعة. وقد وجد أن سرعة الموجات فوق الصوتية السمنت، يؤد

السمنت( تؤثر سلباً على \المقاس الاقصى للركام. الى جانب هذه العوامل فإن نسبة )الماء بازديادتزداد 

الانضغاط  السرعة الموجية. وكذلك تم بناء نموذج الشبكة العصبية الاصطناعية للتنبؤ بمقاومة

للخرسانة من خلال سرعة الموجات فوق الصوتية وعمر الخرسانة. اظهرت النتائج تقاربا جيدا لقيم 

مقاومة الخرسانة المختبرية مع النتائج التي تم التنبؤ بها من خلال نموذج الشبكة العصبية الاصطناعية.

احية ت مف ل ا مات  كل ل ا  

عناصر الخرسانة، سرعة النبضة 

للموجات فوق الصوتية، الشبكات 

العصبية الاصطناعية، مقاومة الضغط 

 للخرسانة

Artificial Neural Network Model for Predicting the Compressive Strength of 

Concrete using Ultrasonic Pulse Velocity 
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ABSTRACT 

      This paper presents the results of study conducted with artificial neural networks 

(ANN) to determine the effects of the variations of concrete constituents on ultrasonic 

pulse velocity (UPV) and developed mathematical model to predict the compressive 

strength of concrete. The proposed input parameters are major factors that affect 

(UPV), such as cement content, water–cement ratio (W/C),  the aggregate–cement 

ratio (A/C), maximum aggregate size, and age of concrete. The output parameter is 

the (UPV). The results show that (UPV) increased with the increase in concrete age. 

Increasing the cement content caused a rapid pulse in velocity readings, and (UPV) 

increased with the increase in maximum aggregate size. Aside from these factors, 

(W/C) negatively affected pulse velocity. Also, the ANN model was built to predict 

the compressive strength of the concrete using pulse velocity and the age of concrete. 

The results showing good rapprochement between experimental value of compressive 

strength with predicated value of compressive strength. 
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Introduction: 

The use of non-destructive testing (NDT) 

methods has received growing attention in recent 

years, especially due to the rising need for quality 

characterization of damage constructions made of 

concrete [1]. The use of (NDT) leads to increased 

safety and allows better scheduling of construction, 

thus making it possible to progress faster and more 

economically. Broadly speaking, these tests can be 

categorized into those that assess the strength of the 

concrete in situ, and those that determine 

characterizations of the concrete [2]. Among the 

available methods of (NDT), ultrasonic pulse velocity 

(UPV) can be considered one of the most promising 

methods for the evaluation of concrete structures, once 

an examination of material homogeneity is made 

possible [3]. This long-established method has been 

used on concrete for more than (60) years.  

International Atomic Energy Agency [4] 

give the longitudinal pulse velocity in (km/s) or in 

(m/s) as follows: 

T/LV                                                  (1)                              

where 

( V )  is the longitudinal pulse velocity 

( L )  is the path length 

( T )  is the time taken by the pulse to traverse that 

length. 

ASTM C597-83 and BS 1881: part 203: 1986 

[2] prescribes the test method (reapproved 1991). This 

method is based on the fact that the velocity of sound 

in a material is related to the elastic modulus of (E) by 

the expression [5]. 

)μ21)(μ1(ρ/)μ1(EV                         (2)                                                                   

Where   

 ( E )  is modulus of elasticity 

 (
ρ

)  is density of the material 

 (
μ

)  is dynamic Poisson’s ratio.  

      The pulse velocity depends only on the elastic 

properties of the material and not on the geometry, 

making this technique very convenient for the 

evaluation of concrete quality. To carry out the test 

under optimum conditions, access is required on 

opposite sides of the test member (direct method), but 

usable results may be obtained with a semi-direct 

method (pulse passing between adjacent faces) or an 

indirect method (pulse passing between transducers 

placed on the same face); however, the amplitude of 

the received signal decreases in both cases, 

particularly in the latter [6]. 

Although the (UPV) test is very simple and 

easy to apply, the interpretation of the test results is 

difficult because the (UPV) values are influenced by a 

number of factors [7], such as cement content, water–

cement ratio (W/C), aggregate–cement ratio (A/C), 

maximum aggregate size, and age of concrete. These 

factors directly influence the UPV and make the 

identification of concrete properties difficult. This 

study aims to demonstrate the possibilities of adapting 

the artificial neural network (ANN) for the prediction 

of (UPV) based on these factors. 

 

 

 Artificial Neural Network 

 

An (ANN) is an interconnected group of 

artificial neurons that uses a mathematical or 

computational model for information processing 

based on a connectionist approach to computation. In 

most cases, an (ANN)’s structure changes according 

to the external or internal information that flows 

through the network [7]. In more practical terms, 

neural networks are non-linear statistical data 

modeling tools. They may be used to model complex 

relationships between inputs and outputs or to find 

patterns in a set of data. (ANN) involves a network of 

simple processing elements (neurons) that can exhibit 

complex global behavior, and is determined by the 

connections between the processing elements and 

element parameters. The original inspiration for the 

technique was from the examination of the central 

nervous system and its neurons (and their axons, 

dendrites, and synapses), which constitute one of the 

most significant information processing elements. In a 

neural network model, simple nodes are connected to 

form a network of nodes, hence the term neural 

network. Although a neural network does not have to 

be adaptive, its practical use comes with algorithms 

designed to alter the strength (weights) of the 

connections in the network to produce a desired signal 

flow. 

These networks are also similar to the 

biological neural networks in the sense that the units 

perform functions collectively and in parallel, rather 

than having a clear description of sub-tasks to which 

various units are assigned [7]. Currently, the term 

(ANN) tends to refer mostly to neural network models 

used in statistics and artificial intelligence. Neural 

network models designed to emulate the central 

nervous system are a subject of theoretical 

neuroscience. 

In the construction of any given (ANN), we 

can identify three kinds of computational neurons, 
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namely, input, output, and hidden, depending on their 

locations in the network. The input nodes, as their 

name indicates, serve as the entrance to the network 

and obtain information from their surroundings. They 

can have any sensor as origin or come from other 

system sectors. The units of the output nodes transmit 

the answer of the (ANN) to the exterior (output 

network). They can be used to control a system 

directly. Finally, the hidden units are those whose 

entrances and exits are inside the net; they do not have 

any contact with the exterior. Fig.(1) shows the 

architecture of the (ANN). 

 

       Validation of experimental Data 

The most important and crucial part of data 

preparation is the process of selecting the right 

variables with strong effects on the desired output 

results. A total of (380) concrete specimen data were 

collected locally [8]. The proposed input values were 

considered major factors that greatly affected the UPV 

of concrete. Five input variables were included 

(cement content, water cement ratio (W/C), aggregate 

cement ratio(A/C), maximum aggregate size, and age 

of concrete). Table (1) shows the ranges of the input 

parameters. The output variable was the UPV that 

ranged from (3.66 km/s to 5.19 km/s). 

 

Table (1): Range of Input Parameters in Database 

 

Input Parameter Min. Max. 

Cement Content (kg/m3) 168 558 

W/C 0.4 0.9 

A/C 

Maximum Aggregate 

Size (mm) 

Age of Concrete (days) 

2.83 

10 

 

7 

11.97 

37.5 

 

150 

                          

 

 Results and Discussion 

A methodology for concrete pulse velocity 

neural identification was developed. In the most 

general sense, a neural network is created for two 

different phases: the training phase and the testing or 

simulation phase. The training and testing procedures 

are followed according to the selected architecture, 

which is the back-propagation network. Therefore, the 

algorithm of a multi-layered feed-forward neural 

network simulator must follow the back-propagation 

learning algorithm, which is represented by the 

Levenberg–Marquardt (LM) back propagation 

algorithm. The (ANN) was developed using the 

popular MATLAB software package (MATLAB 

R2009b) [9]. The most used activation function is 

sigmoid because it squashes very well, is expressible 

in closed form, its modifications lead to or are related 

to other activation functions, and its derivative is easy 

to form. Training and testing the neural network 

started immediately prior to the completion of the 

development of the architecture and data preparation. 

The neural network model for the (UPV) of the 

concrete was developed to perform prediction of the 

amounts of mixed proportions and other variable 

factors that can affect the (UPV) of concrete.  

A total of (380) concrete specimen data were 

used to train and test the neural network. Of these, 

(342) pairs were used for the training of the model, 

whereas the remaining (38) pairs were used for testing 

the (ANN) model. 

The error incurred during the learning 

process may be expressed in terms of the mean 

squared error (MSE) [7]. The (LM) algorithm is 

significantly faster than the more traditional gradient 

descent type algorithms for training neural networks.  

 

It is, in fact, the fastest method for training 

moderately sized feed-forward neural networks [7]. 

Although the iteration of the (LM) algorithm tends to 

take longer than that of other gradient descent 

algorithms, it yields far better results using far less 

iteration. This result leads to a net saving in computer 

processor time over other methods. One concern, 

however, is that it may over fit the data. The network 

should be trained to recognize general characteristics, 

rather than variations specific to the dataset used for 

training. 

 

To avoid the slow rate of learning near the 

ends, specifically the output range due to the property 

of the sigmoid function, the input and output data were 

scaled between intervals (0.1) and (0.9). The scaling 

of the training data sets was carried out using the 

following equation: 

 

  )Δ/x8.09.0(x)Δ/8.0(y max        (3)                                                               

where  

y = Scaled value 

x = input value before scaling  

minmax xxΔ 
 

xmax = Largest value of data set 

xmin = Smallest value of data set  

 

After several trials, the best network 

architecture and parameters to minimize the (MSE) 
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error in the training data were selected, as shown in 

table (2).  

 

Table (2): Properties of (ANN) Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relationship between the destructively 

determined experimental values of (UPV) and its 

predicted values identified by the neural network for 

concrete specimens is shown in Figs. (2) and (3), 

respectively. The results show that the network 

correctly maps the training data and correctly 

identifies the testing data. These results are proven by 

the ideal mapping and the very highly correlated 

coefficient (R) values [10]. Clearly, the network has 

learned the relationship between the concrete mixture 

variables and their respective (UPV) values 

effectively. The correlation coefficient was (0.94), 

making the model performance on the training data 

satisfactory. Thus, the testing points in Fig. (3) are 

located within the cluster of the (ANN)-predicted data 

points and slightly over or under the equity line 

measured and predicted values. The correlation 

coefficient was (0.93). Therefore, the model 

successively predicted the (UPV) of the concrete in a 

precise manner.  

Pulse velocity tests need to be conducted, 

such that the pulse velocity readings are reproducible 

and are affected only by the properties of the concrete 

under investigation, rather than other factors. The 

factors affecting pulse velocity can be divided into two 

categories as follows [11]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Factors that affect pulse velocity, 

regardless of concrete properties, including concrete 

temperature, moisture content, path length, specimen 

size and shape, level of stress, and reinforcing steel. 

(b) Factors that affect concrete properties, 

which affect pulse velocity, including aggregate (size, 

grading, type, and content), cement content, (W/C), 

admixtures, degree of compaction, curing, and age of 

concrete. 

One advantage of neural network models is 

that parametric studies are easily done by simply 

varying one input parameter while all other input 

parameters are set to constant values. Parametric 

studies can verify the performance of the (ANN) 

model in simulating the physical behavior of the 

(UPV) of the concrete. 

 

Architecture       5-8-1 

Training Function      LM 

Activation Function 

Number of Epochs 

Mean Squared Error (MSE) 

Log Sigmoid  

1052 

0.001 

     Figure  1: Architecture of neural network model  

 

cement content 
 
water cement ratio 
 
 
aggregate cement 
ratio 
 
max. aggregate size 
 
age of concrete 

UPV  

Hidden layer 
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Figure  2: Actual Trained and 

Corresponding (ANN) Pulse Velocity 

 

 

 

Figure 3: Actual Tested and Corresponding 

(ANN) Pulse Velocity 

 

Figs. (4 to 7) explain the relationships 

between (UPV) and (W/C) under the effect of the 

other main factors (age of concrete, (A/C), cement 

content and maximum aggregate size). In general, 

mixtures with higher W/C have lower values of pulse 

velocity due to decreasing density, porosity, and 

compressive and flexural strengths. Kaplan studied 

the effect of (W/C) on pulse velocity. He found that as 

(W/C) increases, the compressive and flexural 

strengths and the corresponding pulse velocity 

decrease, assuming there are no other changes in the 

composition of the concrete [12]. Therefore, the 

values for the (UPV) of mixtures with lower (W/C) are 

higher due to the higher amount of solid materials in 

the system.  

 

 
 

Figure 4: Effect of Age of Concrete and (W/C) on 

the Pulse Velocity 

 

The test results of the pulse velocity at 

different ages for concrete mixtures are shown in 

Fig. (4). The effect of age of the concrete on the pulse 

velocity is similar to the effect on the strength 

development of the concrete. The pulse velocity of 

concrete at its early ages can reach more than (80% to 

90%) in (28) days, which is consistent with the 

function of compressive strength of concrete with age 

[13].  

Many investigators have found that pulse 

velocity is significantly affected by the type and 

amount of aggregate. In general, the pulse velocity of 

cement paste is lower than that of the aggregate. For 

the same concrete mixture at the same compressive 

strength level, concrete with rounded gravel has the 

lowest pulse velocity, whereas crushed limestone has 

the highest; crushed granite has a velocity whose value 

is between the previous two [12]. The ratio between 

cement and aggregate also has a strong influence on 

the definition of the pore structure and the material 

capacity [3]. 

Fig. (5) shows the (ANN) prediction of the 

variation of pulse velocity and (W/C) for a concrete 

with maximum aggregate size = 14 mm, age = 28 

days, cement content = 350 kg/m3, and different 

values of (A/C). As shown in the figure, for a given 

value of (W/C), the higher the (A/C), the lower the 
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pulse velocity. The presence of aggregate affects the 

relationship between pulse velocity and compressive 

strength of concrete. At the same cement content, the 

concrete with the highest aggregate content has the 

lowest pulse velocity.  

 

 
Figure 5: Effect of (A/C) and (W/C) on the Pulse 

Velocity 

 

Fig. (6) shows that a given value of (W/C) 

and (A/C) = 5 results in higher cement content and 

lower pulse velocity. However, for a given aggregate 

and a given richness of the mixture, the (UPV) of the 

concrete is affected by changes in the hardened 

cement paste, such as a change in the (W/C), which 

affects the modulus of elasticity of the hardened 

cement paste. For concrete with (A/C) = 5 and low 

cement content (200 and 250 kg/m3), the change in 

W/C does not significantly affect the pulse velocity of 

the concrete. However, the effect of (W/C) on the 

pulse velocity of the concrete with (300 and 350 

kg/m3) cement content is very clear.  

About Fig. (7), for a given (W/C), the 

concrete with a larger maximum aggregate size has 

higher pulse velocity, which may be related to the 

reduction of the number of interfaces in each path 

length. The same is true for a (W/C < 0.6). On the 

other hand, with a (W/C > 0.6), the mixtures with 

aggregate size ≤ 20 mm have the same value as the 

pulse velocity. 

 
 

Figure 6: Effect of Cement Content and (W/C) on 

the Pulse Velocity 

 

 

Fig. (7): Effect of Maximum Aggregate Size and 

(W/C) on the Pulse Velocity 

 

 Model Developments for Compressive Strength 

of Concrete 

 

Another application of ANNs is in building a 

mathematical model. The present study contains five 

input and one output parameters. A model equation 

can be established using the weights as the model 

parameters [14].  

       The equation length depends on the number of 

nodes in the input and hidden layers. To simplify the 

equation, the most importance input parameters, 

which are the pulse velocity and the age of concrete, 
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were used in training the second ANN model with one 

node in the hidden layer. The result was the 

development of an ANN model with a regression of 

0.925 (Fig. 8). The small number of connection 

weights of the neural network enables the ANN model 

to be translated into a relatively simple formula in 

which the compressive strength of the concrete (Fc) 

can be expressed as follows: 

 

𝐅𝐜 =  
𝟏

𝟏+ 𝐞
𝟏.𝟎𝟑−

𝟐.𝟕
𝟏+𝐞−𝐱

                                          (4) 

Where 

𝐱 = 𝟏𝟎. 𝟖 + 𝟏𝟓 𝐯 + 𝟎. 𝟕 𝐚        

𝐅𝐜 = 𝐂𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝐢𝐯𝐞 𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 (𝐌𝐏𝐚)                (5) 

𝐯 = 𝐩𝐮𝐥𝐬𝐞 𝐯𝐞𝐥𝐨𝐜𝐢𝐭𝐲 (𝐤𝐦/𝐬) 

𝐚 = 𝐚𝐠𝐞 𝐨𝐟 𝐜𝐨𝐧𝐜𝐫𝐞𝐭𝐞 (𝐝𝐚𝐲𝐬) 

Before using Eqs.4 and 5, all input variables must be 

scaled between 0.1 and 0.9 using Eq. 3 for the data 

ranges shown in Table 1. The predicted values 

obtained from Eqs.  4 and 5 are scaled between 0.1 and 

0.9. To obtain the actual values, these had to be 

unscaled using Eq. 3. 

 
Figure 8:   Actual and corresponding 

predicted compressive strength of the test 

data 

 

  Conclusions 

This study presents the ability of the (ANN) 

as a good technique for modeling the (UPV) of 

concrete. The (ANN) model performs sufficiently in 

the estimation of the (UPV) of concrete in the training 

and testing process. The (ANN) model predicts the 

(UPV) based on main factors related to concrete 

mixtures. These factors include cement content, 

(W/C), (A/C), maximum aggregate size, and age of 

concrete. The prediction using (ANN) shows high 

consistency with the experimentally evaluated (UPV) 

of concrete specimens used. The results show that 

velocity speed increases with increase in concrete age. 

Moreover, an increase in cement content causes a 

rapid pulse in the velocity readings. Large concrete 

maximum aggregate size is confirmed to increase 

pulse velocity. Aside from these factors, (W/C) 

negatively affects pulse velocity. Also, the ANN 

model predicts the compressive strength of the 

concrete using pulse velocity and the age of concrete. 

The results showing good rapprochement between 

experimental value of compressive strength with 

predicated value of compressive strength. 
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