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ABSTRACT

This paper presents the results of study conducted with artificial neural networks
(ANN) to determine the effects of the variations of concrete constituents on ultrasonic
pulse velocity (UPV) and developed mathematical model to predict the compressive
strength of concrete. The proposed input parameters are major factors that affect
(UPV), such as cement content, water—cement ratio (W/C), the aggregate—cement
ratio (A/C), maximum aggregate size, and age of concrete. The output parameter is
the (UPV). The results show that (UPV) increased with the increase in concrete age.
Increasing the cement content caused a rapid pulse in velocity readings, and (UPV)
increased with the increase in maximum aggregate size. Aside from these factors,
(WIC) negatively affected pulse velocity. Also, the ANN model was built to predict
the compressive strength of the concrete using pulse velocity and the age of concrete.
The results showing good rapprochement between experimental value of compressive
strength with predicated value of compressive strength.
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Introduction:

The use of non-destructive testing (NDT)
methods has received growing attention in recent
years, especially due to the rising need for quality
characterization of damage constructions made of
concrete [1]. The use of (NDT) leads to increased
safety and allows better scheduling of construction,
thus making it possible to progress faster and more
economically. Broadly speaking, these tests can be
categorized into those that assess the strength of the
concrete in situ, and those that determine
characterizations of the concrete [2]. Among the
available methods of (NDT), ultrasonic pulse velocity
(UPV) can be considered one of the most promising
methods for the evaluation of concrete structures, once
an examination of material homogeneity is made
possible [3]. This long-established method has been
used on concrete for more than (60) years.

International Atomic Energy Agency [4]
give the longitudinal pulse velocity in (km/s) or in
(m/s) as follows:

V=L/T O

where

(V) is the longitudinal pulse velocity
(L) is the path length

(T) is the time taken by the pulse to traverse that
length.

ASTM C597-83 and BS 1881: part 203: 1986
[2] prescribes the test method (reapproved 1991). This
method is based on the fact that the velocity of sound
in a material is related to the elastic modulus of (E) by
the expression [5].

V=JE@-p)/pL+p)d-2u)
Where
(E) is modulus of elasticity

2

(p ) is density of the material

(ll ) is dynamic Poisson’s ratio.

The pulse velocity depends only on the elastic
properties of the material and not on the geometry,
making this technique very convenient for the
evaluation of concrete quality. To carry out the test
under optimum conditions, access is required on
opposite sides of the test member (direct method), but
usable results may be obtained with a semi-direct
method (pulse passing between adjacent faces) or an
indirect method (pulse passing between transducers
placed on the same face); however, the amplitude of
the received signal decreases in both cases,
particularly in the latter [6].
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Although the (UPV) test is very simple and
easy to apply, the interpretation of the test results is
difficult because the (UPV) values are influenced by a
number of factors [7], such as cement content, water—
cement ratio (W/C), aggregate—cement ratio (A/C),
maximum aggregate size, and age of concrete. These
factors directly influence the UPV and make the
identification of concrete properties difficult. This
study aims to demonstrate the possibilities of adapting
the artificial neural network (ANN) for the prediction
of (UPV) based on these factors.

Artificial Neural Network

An (ANN) is an interconnected group of
artificial neurons that uses a mathematical or
computational model for information processing
based on a connectionist approach to computation. In
most cases, an (ANN)’s structure changes according
to the external or internal information that flows
through the network [7]. In more practical terms,
neural networks are non-linear statistical data
modeling tools. They may be used to model complex
relationships between inputs and outputs or to find
patterns in a set of data. (ANN) involves a network of
simple processing elements (neurons) that can exhibit
complex global behavior, and is determined by the
connections between the processing elements and
element parameters. The original inspiration for the
technique was from the examination of the central
nervous system and its neurons (and their axons,
dendrites, and synapses), which constitute one of the
most significant information processing elements. In a
neural network model, simple nodes are connected to
form a network of nodes, hence the term neural
network. Although a neural network does not have to
be adaptive, its practical use comes with algorithms
designed to alter the strength (weights) of the
connections in the network to produce a desired signal
flow.

These networks are also similar to the
biological neural networks in the sense that the units
perform functions collectively and in parallel, rather
than having a clear description of sub-tasks to which
various units are assigned [7]. Currently, the term
(ANN) tends to refer mostly to neural network models
used in statistics and artificial intelligence. Neural
network models designed to emulate the central
nervous system are a subject of theoretical
neuroscience.

In the construction of any given (ANN), we
can identify three kinds of computational neurons,
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namely, input, output, and hidden, depending on their
locations in the network. The input nodes, as their
name indicates, serve as the entrance to the network
and obtain information from their surroundings. They
can have any sensor as origin or come from other
system sectors. The units of the output nodes transmit
the answer of the (ANN) to the exterior (output
network). They can be used to control a system
directly. Finally, the hidden units are those whose
entrances and exits are inside the net; they do not have
any contact with the exterior. Fig.(1) shows the
architecture of the (ANN).

Validation of experimental Data

The most important and crucial part of data
preparation is the process of selecting the right
variables with strong effects on the desired output
results. A total of (380) concrete specimen data were
collected locally [8]. The proposed input values were
considered major factors that greatly affected the UPV
of concrete. Five input variables were included
(cement content, water cement ratio (W/C), aggregate
cement ratio(A/C), maximum aggregate size, and age
of concrete). Table (1) shows the ranges of the input
parameters. The output variable was the UPV that
ranged from (3.66 km/s to 5.19 km/s).

Table (1): Range of Input Parameters in Database

Input Parameter ~ Min. Max.
Cement Content (kg/mq) 168 558
wi/C 0.4 0.9
A/C 2.83 11.97
Maximum Aggregate 10 37.5
Size (mm)
Age of Concrete (days) 7 150

Results and Discussion

A methodology for concrete pulse velocity
neural identification was developed. In the most
general sense, a neural network is created for two
different phases: the training phase and the testing or
simulation phase. The training and testing procedures
are followed according to the selected architecture,
which is the back-propagation network. Therefore, the
algorithm of a multi-layered feed-forward neural
network simulator must follow the back-propagation
learning algorithm, which is represented by the
Levenberg—Marquardt (LM) back propagation
algorithm. The (ANN) was developed using the
popular MATLAB software package (MATLAB
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R2009b) [9]. The most used activation function is
sigmoid because it squashes very well, is expressible
in closed form, its modifications lead to or are related
to other activation functions, and its derivative is easy
to form. Training and testing the neural network
started immediately prior to the completion of the
development of the architecture and data preparation.
The neural network model for the (UPV) of the
concrete was developed to perform prediction of the
amounts of mixed proportions and other variable
factors that can affect the (UPV) of concrete.

A total of (380) concrete specimen data were
used to train and test the neural network. Of these,
(342) pairs were used for the training of the model,
whereas the remaining (38) pairs were used for testing
the (ANN) model.

The error incurred during the learning
process may be expressed in terms of the mean
squared error (MSE) [7]. The (LM) algorithm is
significantly faster than the more traditional gradient
descent type algorithms for training neural networks.

It is, in fact, the fastest method for training
moderately sized feed-forward neural networks [7].
Although the iteration of the (LM) algorithm tends to
take longer than that of other gradient descent
algorithms, it yields far better results using far less
iteration. This result leads to a net saving in computer
processor time over other methods. One concern,
however, is that it may over fit the data. The network
should be trained to recognize general characteristics,
rather than variations specific to the dataset used for
training.

To avoid the slow rate of learning near the
ends, specifically the output range due to the property
of the sigmoid function, the input and output data were
scaled between intervals (0.1) and (0.9). The scaling
of the training data sets was carried out using the
following equation:

y =(0.8/A)x+(0.9-0.8x,,, /A)
where

y = Scaled value
X = input value before scaling

A= Xmax ~ Xmin

Xmax = Largest value of data set
Xmin = Smallest value of data set

©)

After several trials, the best network
architecture and parameters to minimize the (MSE)



Salim T. Yousif et al./ Muthanna Journal of Engineering and Technology, 5-1-(2017) 72-79

error in the training data were selected, as shown in
table (2).

Table (2): Properties of (ANN) Model

Architecture 5-8-1
Training Function LM
Activation Function Log Sigmoid
Number of Epochs 1052
Mean Squared Error (MSE) 0.001

cement content

water cement ratio

aggregate cement
atio

max. aggregate size

age of concrete

under investigation, rather than other factors. The
factors affecting pulse velocity can be divided into two
categories as follows [11]:

UPV

Hidden layer

Figure 1: Architecture of neural network model

The relationship between the destructively
determined experimental values of (UPV) and its
predicted values identified by the neural network for
concrete specimens is shown in Figs. (2) and (3),
respectively. The results show that the network
correctly maps the training data and correctly
identifies the testing data. These results are proven by
the ideal mapping and the very highly correlated
coefficient (R) values [10]. Clearly, the network has
learned the relationship between the concrete mixture
variables and their respective (UPV) values
effectively. The correlation coefficient was (0.94),
making the model performance on the training data
satisfactory. Thus, the testing points in Fig. (3) are
located within the cluster of the (ANN)-predicted data
points and slightly over or under the equity line
measured and predicted values. The correlation
coefficient was (0.93). Therefore, the model
successively predicted the (UPV) of the concrete in a
precise manner.

Pulse velocity tests need to be conducted,
such that the pulse velocity readings are reproducible
and are affected only by the properties of the concrete
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(a) Factors that affect pulse velocity,
regardless of concrete properties, including concrete
temperature, moisture content, path length, specimen
size and shape, level of stress, and reinforcing steel.

(b) Factors that affect concrete properties,
which affect pulse velocity, including aggregate (size,
grading, type, and content), cement content, (W/C),
admixtures, degree of compaction, curing, and age of
concrete.

One advantage of neural network models is
that parametric studies are easily done by simply
varying one input parameter while all other input
parameters are set to constant values. Parametric
studies can verify the performance of the (ANN)
model in simulating the physical behavior of the
(UPV) of the concrete.
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Figure 3: Actual Tested and Corresponding
(ANN) Pulse Velocity

Figs. (4 to 7) explain the relationships
between (UPV) and (W/C) under the effect of the
other main factors (age of concrete, (A/C), cement
content and maximum aggregate size). In general,
mixtures with higher W/C have lower values of pulse
velocity due to decreasing density, porosity, and
compressive and flexural strengths. Kaplan studied
the effect of (W/C) on pulse velocity. He found that as
(W/C) increases, the compressive and flexural
strengths and the corresponding pulse velocity
decrease, assuming there are no other changes in the
composition of the concrete [12]. Therefore, the
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Pulse velocity (km/s)

values for the (UPV) of mixtures with lower (W/C) are
higher due to the higher amount of solid materials in
the system.

5.2 T T T T T T
Sr —o— Age of Concrete = 7 days b
—=— Age of Concrete = 14 days
a8l —<o— Age of Concrete = 28 days i
—<— Age of Concrete = 56 days
4.6 7
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4.2 q
4 Max. Agg. Size = 14 mm b
Agg./Cement =5
38 Cement Content = 350 kg/m3
3‘ r r r r r r
(?.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Water cement ratio

Figure 4: Effect of Age of Concrete and (W/C) on
the Pulse Velocity

The test results of the pulse velocity at
different ages for concrete mixtures are shown in
Fig. (4). The effect of age of the concrete on the pulse
velocity is similar to the effect on the strength
development of the concrete. The pulse velocity of
concrete at its early ages can reach more than (80% to
90%) in (28) days, which is consistent with the
function of compressive strength of concrete with age
[13].

Many investigators have found that pulse
velocity is significantly affected by the type and
amount of aggregate. In general, the pulse velocity of
cement paste is lower than that of the aggregate. For
the same concrete mixture at the same compressive
strength level, concrete with rounded gravel has the
lowest pulse velocity, whereas crushed limestone has
the highest; crushed granite has a velocity whose value
is between the previous two [12]. The ratio between
cement and aggregate also has a strong influence on
the definition of the pore structure and the material
capacity [3].

Fig. (5) shows the (ANN) prediction of the
variation of pulse velocity and (W/C) for a concrete
with maximum aggregate size = 14 mm, age = 28
days, cement content = 350 kg/m?, and different
values of (A/C). As shown in the figure, for a given
value of (W/C), the higher the (A/C), the lower the
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pulse velocity. The presence of aggregate affects the 54
relationship between pulse velocity and compressive
strength of concrete. At the same cement content, the 5.2
concrete with the highest aggregate content has the .
lowest pulse velocity.
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: . g 4.2+ .
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cement paste. For concrete with (A/C) = 5 and low 9
cement content (200 and 250 kg/m?), the change in 3.81 i
W/C does not significantly affect the pulse velocity of
the concrete. However, the effect of (W/C) on the 45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

pulse velocity of the concrete with (300 and 350
kg/m®) cement content is very clear.

About Fig. (7), for a given (WIC), the
concrete with a larger maximum aggregate size has
higher pulse velocity, which may be related to the
reduction of the number of interfaces in each path
length. The same is true for a (W/C < 0.6). On the
other hand, with a (W/C > 0.6), the mixtures with
aggregate size < 20 mm have the same value as the
pulse velocity.
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Water cement ratio

Fig. (7): Effect of Maximum Aggregate Size and
(WIC) on the Pulse Velocity

Model Developments for Compressive Strength
of Concrete

Another application of ANNs is in building a
mathematical model. The present study contains five
input and one output parameters. A model equation
can be established using the weights as the model
parameters [14].

The equation length depends on the number of
nodes in the input and hidden layers. To simplify the
equation, the most importance input parameters,
which are the pulse velocity and the age of concrete,
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were used in training the second ANN model with one
node in the hidden layer. The result was the
development of an ANN model with a regression of
0.925 (Fig. 8). The small number of connection
weights of the neural network enables the ANN model
to be translated into a relatively simple formula in
which the compressive strength of the concrete (Fc)
can be expressed as follows:

1
F. = 10327 4)
1+e " 1+e X
Where
x=10.84+15v+0.7a
F. = Compressive strength (MPa) 5)

v = pulse velocity (km/s)
a = age of concrete (days)

Before using Egs.4 and 5, all input variables must be
scaled between 0.1 and 0.9 using Eq. 3 for the data
ranges shown in Table 1. The predicted values
obtained from Egs. 4 and 5 are scaled between 0.1 and
0.9. To obtain the actual values, these had to be
unscaled using Eq. 3.
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Conclusions

This study presents the ability of the (ANN)
as a good technique for modeling the (UPV) of
concrete. The (ANN) model performs sufficiently in
the estimation of the (UPV) of concrete in the training
and testing process. The (ANN) model predicts the
(UPV) based on main factors related to concrete
mixtures. These factors include cement content,
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(W/C), (AIC), maximum aggregate size, and age of
concrete. The prediction using (ANN) shows high
consistency with the experimentally evaluated (UPV)
of concrete specimens used. The results show that
velocity speed increases with increase in concrete age.
Moreover, an increase in cement content causes a
rapid pulse in the velocity readings. Large concrete
maximum aggregate size is confirmed to increase
pulse velocity. Aside from these factors, (W/C)
negatively affects pulse velocity. Also, the ANN
model predicts the compressive strength of the
concrete using pulse velocity and the age of concrete.
The results showing good rapprochement between
experimental value of compressive strength with
predicated value of compressive strength.
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