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Abstract 
 
In recent decades, Concrete filled steel tube (CFST) columns have been widely utilized in construction due to their high 
strength, ductility, energy absorption, fire resistance, and cost reduction due to the absence of formwork. Estimating the 
Axial compressive capacity (ACC) of short rectangular CFST columns has been the subject of numerous experiments. In 
this study, artificial neural network was used to make predictions regarding the ACC of CFST columns. Multi fed forward 
back propagation and Adaptive neuro fuzzy inference system were used. 512 experimental tests were collected from the 
literature. One thousand models for multi fed forward back propagation and one hundred for adaptive neuro fuzzy inference 
system were trained and tested. artificial neural network models are evaluated by using statistical analysis to validate and 
test the prediction models. The best models were selected by using the Root mean square error (RMSE) and Coefficient of 
determination (R2). Using the RMSE, R2, and Mean absolute percentage error (MAPE), the best models were compared to 
design code formulas. As a result, the best model performed much better in every performance measure. The best model for 
multi fed forward back propagation has better performance in comparison with the best model for adaptive neuro fuzzy 
inference system. For interested users and researchers, a graphical user interface was created using the best model for multi 
fed forward back. 
 
Keywords: Artificial neural network, Multi fed forward back propagation, Adaptive neuro fuzzy inference system, Concrete filled steel 
tube columns, Axial compressive capacity. 
 

1. Introduction 

Steel-concrete composite columns come in two varieties that are commonly utilized in structures. Those with concrete-
filled steel sections and those with concrete-encased steel sections, as indicated in Figure 1 [1, 2]. Amazing characteristics 
of the Concrete filled steel tube (CFST) Structural System include its high strength, high ductility, high lateral stiffness, 
energy absorption, damping against vibration, fire resistance, and significant time savings during construction because 
formwork is not required. A CFST member is made up of two materials that have different stress-strain curves and behave 
differently. Because of the interactions between the two materials, determining combined properties such as second 
moment and elastic modulus is difficult. The failure mode is heavily influenced by the cross-section area, steel percentage, 
and concrete and steel strength. Contact between steel and concrete, concrete confinement, residual stresses, creep, 
shrinkage, and loading type all have an impact on the behavior of CFST columns. Despite its many advantages, the 
adoption of CFST in building construction has been hampered by a lack of knowledge regarding construction and the 
difficulty of connection detailing. More analysis and research are required to ensure that this technology can be used in 
construction without causing difficulties [1, 2]. High-rise buildings, bridge piers with high traffic strain rates, and railway 
decks use CFST columns for earthquake resistance. Furthermore, as compared to concrete encased steel composite 
sections, CFST columns exhibit strong compressive and torsional resistance along all axes [2, 3]. The load was divided into 
concrete and steel at the beginning of the loading process. The confinement effect begins to occur during the following 
phase of loading. The concrete becomes subject to triaxial stresses, whereas steel is subject to biaxial stresses. Some 
researchers, such as Knowles and Park, reported that concrete confinement abruptly occurs around 0.95 fʹc (strain of 0.002), 
when the concrete begins to expand [4]. Tsuji et al. and Zhang et al. recommended a steady rise in concrete confinement 
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starting with microcracking in the concrete (strain of 0.001) and progressing to 100% confinement is achieved at a strain of 
around 0.002 [5, 6]. Failure modes of the CFST can vary widely based on the material characteristics and geometric 
configuration of the component parts. Most steel tubes fail due to local buckling. In comparison to an empty steel tube, the 
existence of concrete infill delays local buckling in the CFST column. The concrete prevents the steel tube from bending 
inward, as shown in Figure 2. Instead, the concrete makes it buckle outward [7]. The shape of the CFST columns is 
determined by the geometry of the steel tube it is contained in, therefore it might be round, square, rectangular, L-shaped, 
elliptical, etc. In the construction field, square and circular CFST sections are utilized the most frequently. The load 
carrying capability of a CFST column is greatly influenced by its cross-section shape, as well as the steel tube's length-to-
thickness ratios [1, 8, 9]. 

In 1901, Sewell did the first research study on CFST columns, and in 1957, Kloppel and Goder did the first thorough test 
on CFST columns [10, 11]. In Sewell's investigation, the reason the hollow tube inside the tube column was filled with 
concrete was to keep it from rusting. After some of the columns were accidently overloaded, the stiffness of the structure 
improved noticeably. Kloppel and Goder tested the first column in the late 1970s; since then, research into the Axial 
compressive capacity (ACC) of CFST columns has advanced dramatically [10]. 

Artificial neural networks were initially conceived of being straightforward representations of how brains work. There are 
billions of neurons in the human brain, all of which are interconnected. These are cells that contain particular members that 
make it possible for single to be communicated to the neurons that are located nearby [12]. 

Observations of the application of prediction networks in civil engineering may be found in the works of French et al. [13], 
Kasperkiewicz et al. [14], Grubert [15], Aziz [16], Thirumalaiah and Deo [17], Deo and Kumar [18], Jiang et al. [19], 
Jakubek and Strasser [20] and Zhao [21], amongst others. Over the past few years, a number of computational research that 
make use of artificial intelligence and machine learning methodologies have seen widespread application. Several studies 
have used methods like artificial neural network, gene-expression programming, particle swarm optimization, and the 
imperial competitive algorithm for civil engineering. Some of these sources include Armaghani et al. [22], Chen et al. [23], 
Parsajoo et al. [24], Du et al. [25], Kovačević et al. [26], Li et al. [27], Asteris et al. [28], Nguyen et al. [29], Armaghani et 
al. [30], Asteris et al. [31], Asteris et;al. [32] and Khajehzadeh et al. [33].      

The ACC of CFST columns was predicted using artificial neural network by Moon et;al. [34], Ahmadi et;al. [35], Ahmadi 
et;al .[36], Du et;al. [37], Jayalekshmi et al. [38], Tran et al. [39], Tran et al. [40], Zarringol et al. [41], Asteris et al. [42], 
Sarir et al. [43], Le et al. [44], Luat et al. [45], Mai et al. [46], Avci-Karatas [47], Wang and Chan [48], Duong et al. [49] 
and Zhou et al. [50]. It should be noted that the majority of studies only attempted to estimate the ACC of CFST columns 
under axial force. In addition, the networks were trained with insufficient data, which limits artificial neural networks' 
ability to learn input-output correlations over many ranges and hence reduces prediction accuracy. All of the previous 
studies used one or two hidden layers and not more than 25 neurons in each hidden layer. In addition, three activation 
functions were used: Hyperbolic tangent sigmoid, Log-sigmoid, and Linear transfer function. On the other hand, most of 
studies focused just on developing artificial neural networks without producing any graphical user interface or empirical 
equation from the trained networks.  

In construction, CFST columns have been used a lot in the last few decades. Despite the fact that CFST columns are 
structurally vulnerable to bending, shear, and torsion, their ACC remains a significant aspect of their design. The design 
codes and mathematical model that were proposed by the authors for predicting the ACC of CFST columns are unable to 
accurately estimate the ACC of CFST columns, as will be mentioned later. As well as limitations for application, it is 
concerned with the use of strong strength materials steel and concrete. 

In the current investigation, an artificial neural network was utilized to make predictions regarding the ACC of short 
rectangular CFST columns. For the purpose of generalizing the link between inputs and outputs, experimental tests were 
taken from the published research and used to train the artificial neural network. In this study, the artificial neural network 
models were made with more than hidden layers, neurons, and another activation function. Using an adaptive neuro fuzzy 
inference system model, the ACC of CFST columns was predicted. The model that makes the best predictions was chosen. 
In the end, a graphical user interface was designed by making use of the most effective model. 
 



Muthanna Journal of Engineering and Technology 11 

 

 
Fig. 1: The kinds of composite columns. 

 
 

 
Fig. 2: Because of the effect of infill, the mode of buckling changes with length [7]. 

 

1.1. Design codes 

The ACC estimation of CFST columns is supported by a number of design standards for steel and composite members. 
These include Eurocode4[51], AISC360[7], ACI318[52], AIJ (2001) [53], DBJ (2010) [54], AS5100 [55]. As well, almost 
all design codes have limits on how they can be used, such as limiting the range of strengths that can be used for steel and 
concrete. In addition, several codes include limitations on the amount of steel that can be contained within the composite 
section. Table 1 shows the deferent limitations for design codes. 
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Table 1: Limitation of design codes 

Design codes 
Material properties Geometric properties 

Other limitation (MPa) (MPa) Rectangular section 

Eurocode 4 
  

 

 

AISC 360 - 16 
  

 

 

AS 5100 
  

 

 

Japanese code 
AIJ 2001   

 

 

 

Chinese code-
2010   

 

 

ACI318 - 2014 
 

 

 

 

 

1.1.1. Eurocode 4 (2004)  

The ACC of CFST columns could be estimated by employing the formula that is described in EC4 as follows: 
 

                                                                                     (1) 
  
The axial load capacity                                                                                               (2) 
  
Where  reduction factor [51]. 

 

1.1.2. Figure captions  

Only within certain characteristics and restrictions, the AISC-360-16 standard provides a formula that can forecast the ACC 
of CFST columns [7]. As the following equation demonstrates, the compressive strength of a CFST section is identical to 
the section's plastic strength in the event that the section is compact: 
 
If   then               compact section 

If   then             non-compact section 

If   then               slender section 

where  is compact section's compressive strength,  is non-compact section's compressive strength,  is the 

slender section's compressive strength, , ,  . 

The nominal compressive strength is calculated depending on the column slenderness as follows: 

When  

where  is the Euler critical buckling load. 
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                                                                                   (3) 

When  

                                                                                           (4) 

1.1.3. ACI 316 (2014)  

The ACI [52] states that, The CFST column's ACC is given by 
 

                                                                                          (5) 
 

Where  and  are the cross-section areas for steel and concrete, respectively,  represented steel’s yield strength and   
represented concrete’s compressive strength. 

1.1.4 AS 5100 (2004) 

The ACC for CFST columns is being estimated using AS 5100 [55] by combining the tube's and concrete's axial load 
capacities. This leads to 

                                                                                       (6) 

where  and  are the cross-section areas for steel and concrete, respectively,  and  are the capacity factors for steel 
and concrete, respectively, with values of 0.90 and 0.60 respectively. 
The influence of the column's slenderness is then taken into consideration with the help of a reduction factor that is denoted 
by . As a result of this, the ACC of the column could be determined as follows: 

                                                                                          (7) 

Where  the slenderness reduction factor. 

1.1.5 Japanese codes (AIJ-2001) 

According to Japanese code [53]. Use the following formula to determine ACC of CFST columns: 

If   then the ACC is 

                                                                                         (8) 

Where η = 0 for a rectangular CFST column 

If  , then the ACC is  

                                                                                   (9) 

If  , then the ACC is 

                                                                               (10) 

where KL is the member's effective length,  is the buckling capacities of the concrete,  is the steel tube's buckling 
capacity. 

1.1.6 DBJ 13-51 (2010) 

With the assistance of a combined yield stress, which is represented by the symbol  in the Chinese code DBJ 13 [54], the 
compression load that is applied to the CFST columns section may be calculated. The CFST column’s compressive 
resistance is then calculated as: 

                                                                                 (11) 
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On other hand, Gourley and Hajjar [56], Zhang and Shahrooz [57] and Inai and Sakino [58] suggested a number of 
different methodologies for measuring the ACC of rectangular CFST columns. According to these models, confinement 
was assumed to increase the concrete core's ductility but not its strength. Sakino et al. provided design methods to forecast 
the ACC of circular or square CFST columns [59]. 

2. Neural network and neuro fuzzy modeling 

2.1. Multi fed forward back propagation  

In the early 1970s, a number of different sources introduced the feed forward, backpropagation architecture [60]. Figure 3 
illustrates the back propagation architecture of a multi fed forward back propagation neural network. 
The three primary elements that make up an multi fed forward back propagation neural network are the input layer, the 
hidden layers, and the output layer. There are a number of neurons in each layer. Neurons in the input layer are equivalent 
to inputs, and neurons in the output layer are equivalent to outputs. It could contain multiple layers that are hidden. Each 
hidden layer contains a certain number of neurons, and by applying the approach of trial and error, the ideal number of 
neurons can be found. Each neuron performs mathematical operations by multiplying income by weights, adding them 
together, and then entering the activation function to produce the neuron's output. There are several activation functions can 
be used. Using error back propagation, the weights were changed to make the difference between the target and predicted 
values small as possible. Throughout the training process, these processes keep repeating themselves. When the 
discrepancy between predicted and target values is reduced to the desired value, the training procedure will be complete [61, 
62]. 
 

 
Fig. 3: Multi fed forward back propagation architecture. 

 

2.2. Adaptive neuro fuzzy inference system 

The idea of fuzziness was first put forth by Zadeh (1965). He introduced fuzzy sets in order to represent complex and 
intricate systems using fuzzy approximation. “Generally, fuzzy logic can be considered as a logical system that provide a 
model for modes of human reasoning that are approximations rather than exact” [63]. The fuzzy neural network is a system 
that blends fuzzy logic and artificial neural networks theory [64].  
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Figure 4 (a) shows the membership function and (b) the architecture of the adaptive neuro fuzzy inference system. There 
are five main layers that make up the adaptive neuro fuzzy inference system. The first layer divided the inputs to many 
logics, such as long, medium, and short, by using the membership function, which is known as the fuzzification layer. 
There are several memberships that can be used. The generation of the rules falls under the purview of the second layer. 
There are two rules that can be generated: AND and OR. When the rule is AND, it means multiplying each income from 
the first layer together. The third layer is the ratio of rule weights to the sum weights of the rules. The fourth layer is 
multiplied by the normalized value and consequence parameters set for each input with the weight ratio from the previous 
layer. The fifth layer is a summation of the overall incomes from the fourth layer. The hybrid back propagation algorithm is 
used to reduce the error between the predicted values and the target values as much as possible [65]. 
 

 
a) Membership function 

 
b) Architecture of adaptive neuro fuzzy inference system. 

Fig. 4: (a) Membership function. (b) Architecture of adaptive neuro fuzzy inference system. 
 

2.3. Methodology 

The researchers describe in this part the process they used to build the artificial neural network models. Figure 5 illustrates 
the method used to conduct this study. To begin, experimental data was gathered from the various published sources that 
were available. Secondly, data analysis was performed to delete similar data. Thirdly, in order to create prediction model of 
the ACC of CFST columns, two different kinds of artificial neural network are utilized. multi fed forward back propagation 
and adaptive neuro fuzzy inference system were used. Models were evaluated using statistical analysis to validate and test 
the model’s prediction. The best models were selected from models that have the lowest error prediction. A comparison 
was made between the performance of the best models and the formulas of design codes as the fourth step in the process. 
Finally, it develops a graphical user interface using the best models selected for estimation of the ACC of CFST columns. 
The most efficient model was used to create a graphical user interface. All the work was performed by MATLAB R2020a 
using the live script codes. 
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Fig. 5: The method used to conduct the study. 

 

2.4. Experimental datasets 

On short, rectangular CFST columns, a variety of experiments were collected in order to train and build the artificial neural 
network models. A significant portion of the database was taken from [66] databases. The investigation entirely focused on 
specimens that had been subjected to a monotonic concentric load and did not contain any steel reinforcement. If a source 
reported the compressive cube strength of concrete (fcu), the following formula was used to convert fcu to fʹc [67]: 
 

                                                                                                                               (12) 
 
Short CFST columns have length-to-width ratios of less than or equal to 4, whereas long CFST columns have length-to-
width ratios larger than 4 [68]. Based on above expression 512 experimental tests were collected with parameters including 
width, height, steel tube thickness, length, steel’s yield strength and concrete’s compressive strength. Normal (fy equal or 
less than 460 MPa and fʹc equal or less than 50 MPa) to high strengths (fy greater than 460 MPa and fʹc greater than 50 MPa) 
material properties are available [51]. 
Table 2 presents a statistical analysis of input parameters and output, which covers the minimums and maximums as well as 
the mean and standard deviation. When it comes to properties of materials, it is clear that a wide variety of steel yield 
strength limits, including mild and high strength steels, is covered. Similarly, the database contains a wide range of 
concrete strengths. 
Figure 6 shows the data parameters' histogram. A significant amount of research was clearly done on specimens with 
dimensions of 100 to 150 mm width, 80 to 220 mm height, 1.8 to 6.2 mm steel tube thickness, 200 to 700 mm length, 250 
to 450 MPa steel’s yield strength, 20 to 80 MPa concrete’s compressive strength, 0.5 to 50 heights to tube thickness ratio, 
2.8 to 3.2 length to width ratio, and 100 to 3000 kN ACC. 
All parameters, input and output, are interdependent, as shown in Figure 7. Input parameters with a high coefficient imply a 
linear relationship between variables, reducing the database's generality. Except for the high coefficients between width and 
height, width and length, and height and length, the correlation coefficient for all other couples of input parameters is <0.6, 
indicating sufficient dispersion. The ratio of height to steel tube thickness and the ratio of length to width have the lowest 
correlations between input parameters and output. 
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Fig. 6: Data distribution for inputs and output. 
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Fig. 7: Variable correlation (input and output parameters). 

 
 

Table 2: Statistical analysis of data parameters. 
Type of 
statistics 
function 

Width 
(mm) 

Height 
(mm) 

Tube 
thickness 

(mm) 

Length 
(mm) 

 
(MPa) 

 
(MPa) 

H/t L/b ACC 
(kN) 

Mean 157.96 160.56 4.77 495.41 393.28 58.51 42.42 3.13 2769.94 

Min 60.00 44.00 0.70 60.00 115.00 8.52 10.49 0.59 182.00 

max 400.00 400.00 12.50 1400.0 835.00 164.10 285.7 4.00 14116.00 
Standard 
deviation 64.82 64.93 2.41 223.43 177.60 34.04 31.50 0.47 2344.61 

 

3.3. Multi fed forward back propagation neural network 

The parameters that were used to develop the multi fed forward back propagation are described in this section by 
researchers. MATLAB's artificial neural network Toolbox was used in the process of developing the networks [69]. Most 
of the time, multi fed forward back propagation network is the one used in engineering. As a result, this network was 
trained using the back-propagation approach. There are various back-propagation algorithms for training a network, 
including Levenberg-Marquardt and Resilient backpropagation. The algorithm chosen is influenced by a number of 
parameters, including the network's complexity and the number of inputs [69]. The Levenberg-Marquardt technique was 
used as the learning mechanism in this study. In addition, the Levenberg-Marquardt technique has the advantage of 
requiring a validation dataset to prevent overfitting and utilizing 70% of the data for training the neural network, 25% for 
validating the network, and 5% for testing the network [69]. The size of an artificial neural network is largely determined 
by its number of hidden layers and the number of nodes in each layer [70]. 
Width, height, steel tube thickness, length, steel’s yield strength, and concrete’s compressive strength were employed as 
input parameters in the development of artificial neural network models, with and without the height to tube thickness of 
steel ratio and the length to width ratio. The ACC of CFST columns as output of artificial neural network. Table 3 lists 
artificial neural network training settings. It divided the database randomly into three groups: 70% for training, 25% for 
validating, and 5% for testing. The input and output data are normalized between 0 and 1. Hidden layers have six different 
functions, and the output layer's activation function is a linear transfer function [69]. 
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Table 1: Model training parameters for artificial neural networks. 

Parameters Value MATLAB 
function 

Training approaches Levenberg–Marquardt function TRAINLM 
Normalize Between (0 - 1) MAPMINMAX 

Count of layers that are hidden (1 – 4)  
Hidden layer neurons (5 – 10 – 15 – 20 – 25 – 30 – 35 – 40)  

Database dividing 70% for training, 25% for validating, 5% for 
testing DIVIDERAND 

Training goal 0  
Epochs 1000  

Cost function Mean square error MSE 

Hidden layer’s activation function 

Hyperbolic tangent sigmoid TANSIG 
Log-sigmoid LOGSIG 

Positive linear POSLIN 
Softmax SOFTMAX 

Triangular basis TRIBAS 
Radial basis RADBAS 

Output layer’s transfer function Linear PURELIN 
 

2.6. Adaptive neuro fuzzy inference system  

In this section, researchers describe the parameters used to develop the adaptive neuro fuzzy inference system. The 
adaptive neuro fuzzy inference system model was created using the MATLAB neuro fuzzy designer toolbox. In the study, 
the Sugeno type of adaptive neuro fuzzy inference system, Gaussian membership function, and subtractive clustering were 
used to generate the rules for the adaptive neuro fuzzy inference system. Table 4 shows the parameters for training and 
making rules for the adaptive neuro fuzzy inference system [71]. It divided the database randomly into three groups: 70% 
for training, 25% for validating, and 5% for testing [71]. The parameters used to create the multi fed forward back 
propagation neural network are the same as those used to create it. 
 

Table 2: The settings that determine how the adaptive neuro fuzzy inference system learns and creates its rules. 
Parameters Value MATLAB 

function 
Training algorithm Hybrid algorithm  

Error tolerance 0  

Database dividing 70% for training, 25% for validating, 5% for 
testing DIVIDERAND 

Epochs 20  
Cluster influence range (0.5 – 0.55 – 0.6 – 0.65 – 0.7)  

Squash factor (0.2 – 0.25 – 0.3 – 0.35 – 0.4)  
Accept ratio (0.2 – 0.3 – 0.4 – 0.5 – 0.6)  
Reject ratio (0.15 – 0.25 – 0.35 – 0.45 – 0.55)  

  

2.7. Performance models  

Three typically employed indicators, including Root mean square error (RMSE), Coefficient od determination (R^2) and 
mean absolute percentage error (MAPE), are utilized in the process of performance and effectiveness evaluation. The 
following is the computation for these indicators: 

                                                                              (13) 

                                                                                (14) 

                                                                                   (15) 

where p is the value that has been predicted, y is the value that has been targeted, m is the number of samples, and p_av   is 
the average of the values that have been predicted. 
The developed models' dependability and accuracy were assessed using RMSE and R^2. The RMSE is a metric that may be 
used to assess short-term efficiency and is a benchmark for the difference between projected values and target values. The 
lower RMSE, the more precise the model evaluation. The variance that the model interprets, or the variance that is reduced 
when employing the model, is measured by the R^2. R^2 values range from (0 – 1), with the model showing good 
predictability when it is close to 1 and not undergoing analysis when it is close to 0. The overall prediction accuracy can be 
determined by these performance criteria. Regardless of whether the deviation was positive or negative, MAPE represents 
the average difference between the estimated and target values. The smaller MAPE, the more accurate the model evaluation. 
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2.8. Best models selection and comparison  

Researchers explain how they choose the best models in this section. Models were chosen based on how well they 
performed given input parameters and how much they deviated from predictions of experiments. RMSE and R^2 indictors 
are applied to determine the best models. The best models have the smallest RMSE and the highest R^2 for all four sets of 
data (training, validating, testing, and all data). The behavior of models with parameters inputs is acceptable. In order to 
prevent overfitting, the best models should have a RMSE and a R^2 that are as similar as possible for training, validating, 
testing, and all data. Overfitting is the large difference in error between training, validating, testing, and all data sets. 
Finally, the best models’ performance is tested by comparison with design codes. There are six different codes that are used 
to evaluate how well models perform. The limitations of design codes were ignored during the comparison. 

2.9. Graphical user interface 

All interested users can benefit from using the graphical user interface to design, learn about, and understand the axial 
behavior of short rectangular CFST columns. Using the best models, a graphical user interface was created. 

3. Results and discussion 

This study designs a multi-fed forward back propagation and adaptive neuro fuzzy inference system for predicting ACC of 
short rectangular CFST columns. Two best models are selected, and their performance is evaluated. The models are 
compared to standard codes and a graphical user interface is created. 
The RMSE and the R2 for multi fed forward back propagation neural network models are presented in Figure 8 (a) and (b), 
respectively. These models have a minimum RMSE from the one thousand models developed. MFFBPModel7 was 
selected as the best model. MFFBPModel7 has the minimum RMSE and a higher R2. The RMSE and the R2 for adaptive 
neuro fuzzy inference system models may be seen in Figure 8 (c) and (d), respectively. These models have the lowest 
RMSE of the one hundred and twenty models developed. ANFISModel5 was selected as the best model. ANFISModel5 
has the minimum RMSE and a higher R2. Table 5 presents the RMSE and R2 for MFFBPModel7 and ANFISModel5 
models. 
 

 

 

 
a) RMSE for multi fed forward back propagation models  b)  for multi fed forward back propagation models 

 

 

 
c) RMSE for adaptive neuro fuzzy inference system models  d)  for adaptive neuro fuzzy inference system models 

Fig. 8: Displays the RMSE and R2 for neural network and neural fuzzy models. 
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Figure 9 illustrates the training process of MFFBPModel7 with the mean square error for training, validating, and testing. 
The best validation performance occurred at epoch 27, with a mean square error of 59775.45. Figure 10 illustrates the 
architecture of MFFBPModel7. MFFBPModel7 has four hidden layers: 35 neurons in the first, 15 in the second, 30 in the 
third, and 10 in the fourth. The activation function of hidden layers is softmax. Input parameters were width, height, tube 
thickness of steel, length, steel’s yield strength, concrete’s compressive strength, height to steel tube thickness ratio, and 
length to width ratio. Figure 11 shows the regression for MFFBPModel7. The regression for MFFBPModel7 is 0.994, 
0.994, 0.997, and 0.994 for training, validating, testing, and all datasets, respectively. Higher regression was achieved with 
the experimental results. 
The performance of ANFISModel5 is shown in Figure 12. There is good agreement with the experimental results, but some 
of the predicted values are less than zero. Figure 13 shows the regression of ANFISModel5. The regression for 
ANFISModel5 is 0.997, 0.986, 0.993, and 0.995 for training, validating, testing, and all datasets, respectively. 
Higher regression was achieved with the experimental results. Figure 14 shows the behavior of MFFBPModel7 with input 
parameters. The method used is to change the parameter within the range of experimental data, and other parameters are 
constant with the mean values of experimental data mentioned in Table 5. It is clear that with the increase in width, height, 
steel tube thickness, steel’s yield strength, and concrete’s compressive strength, the prediction model increases except that 
it decreases with increasing length [72]. 
 
 

 
Fig. 9: Performance of training for MFFBPModel7. 

 
 

 
Fig. 10: The architecture of MFFBPModel7. 
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Fig. 11: Regression of MFFBPModel7. 

 
 

 
Fig. 12: Performance of ANFISModel5. 
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Fig. 13: Regression of ANFISModel5. 

 

 

 

 

 

 

 

 

 

 
Fig. 14: Behavior of MFFBPModel7 with input parameters. 
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Table 3: The models' RMSE and . 

Model name 
Training data Validating data Testing data All datasets 

RMSE 
 

RMSE 
 

RMSE 
 

RMSE 
 

MFFBPModel7 238.30 0.9894 244.49 0.9892 199.30 0.9953 238.13 0.9897 
ANFISModel5 176.04 0.9949 328.96 0.9723 299.22 0.9871 228.35 0.9905 

 
Figure 15 illustrates the behavior of ANFISModel5 with input parameters. By using the same method mentioned above. It 
is clear that with an increase in height, tube thickness of steel, steel’s yield strength, and concrete’s compressive strength, 
the prediction model increases. It is observed that with increasing the width and length of the column, the model prediction 
increases, and after that, it decreases. Sometimes, model predictions give values less than zero. This means that the 
prediction model is not suitable for all applications for the prediction of the ACC of short rectangular CFST columns. 
 

 

 

 

 

 

 

Fig. 15: Behavior of ANFISModel5 with input parameters. 
 
Figure 16 shows the results for MFFBPModel7, ANFISModel5, Eurocode4, AISC360, AS5100, ACI318, AIJ2001, and 
DBJ13-51 as a comparison with experimental results. The design codes are applied without safety factors and ignore the 
limitations mentioned in Table 6. By using all datasets, MFFBPModel7 gives the best results, followed by ANFISModel5, 
but with some values less than zero. Figures 17, 18, and 19 present the comparison between MFFBPModel7, 
ANFISModel5, and design codes. ANFISModel5 and MFFBPModel7 have the least RMSE, a higher R2, and the least 
MAPE. It followed by Eurocodes4 as performance index [73]. As a result, MFFBPModel7 has good predictions for the 
ACC of short rectangular CFST columns. In order to facilitate comparison between different models and design codes, 
Table 6 provides the values of the RMSE, R2, and MAPE. 
MFFBPModel7 has a strong agreement with experimental data and delivers the best results for the ACC of short 
rectangular CFST columns compared with ANFISModel5 and the formula of design codes, according to all of the results 
and comparisons that were described previously. Finally, as seen in Figure 20, the graphic user interface was created. 
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Fig. 16: Results of MFFBPModel7, ANFISModel5and 
design codes as comparison with experimental results. 

 Fig. 17: RMSE comparison between 
MFFBPModel7, ANFISModel5 and design codes. 

 
 

 

 

 

Fig. 18: R2 comparison between MFFBPModel7, 
ANFISModel5and design codes. 

 Fig. 19: MAPE comparison between 
MFFBPModel7, ANFISModel5and design codes. 

 
 
 

Table 4: Comparison between models and design codes. 

Type of 
statistical 
function 

MFFBPMo
del7 

ANFIS 
Model5 Eurocode4 AISC360

-16 AS5100 ACI318 AIJ-2001 DBJ13-51 

RMSE 238.13 228.35 451.88 478.89 915.35 453.42 453.42 930.73 

 

0.9897 0.9905 0.9643 0.9729 0.9680 0.9687 0.9687 0.9724 

MAPE 9.88 9.46 12.05 14.10 25.53 12.53 12.53 21.41 
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Fig. 20: Graphical user interface for estimating the ACC of CFST columns. 

 

4. Conclusion and recommendations 

4.1. Conclusion 

Artificial neural network was used in this investigation to predict the ACC of short rectangular CFST columns. For this 
purpose, two type of neural network were used. The first one was a multi fed forward back propagation neural network. 
The second one was Sugeno type of adaptive neuro fuzzy inference system with Gaussian membership function and 
Subtractive Clustering to generate the rules for system.  
A comparison of the two different kinds of artificial neural network models with the different prediction approaches design 
codes use. The results of this study have added to what was already known about how artificial neural network can be used 
to solve a specific control engineering problem. The new research is summarized in five points: 
1. Generally, multi fed forward back propagation neural network model is more accurate in predicting the ACC of CFST 

columns when compared with the adaptive neuro fuzzy inference system model. 
2. The RMSE and R^2results showed that multi fed forward back propagation neural network trained the using back 

propagation method could accurately estimate the ACC of rectangular CFST columns. 
3. The behavior of multi fed forward back propagation neural network best model with input parameters changing within 

the range of datasets is acceptable when compared with the behavior of adaptive neuro fuzzy inference system best 
model. 

4. The performance of the best model was noticeably better across the board, as measured by the various performance 
indices, including the RMSE, the R^2, and the MAPE when compared with design codes (Eurocode 4, AISC360-16, 
AS 5100, AIJ 2001, DBJ13-51, and ACI318). 

5. The best models were used to construct the graphical user interface, which is now freely available to researchers, 
engineers, and interested individuals. 

4.2. Recommendations 

While this study has contributed to the existing body of knowledge in the field of artificial neural network for estimating 
the ACC of CFST columns, it is recommended that future research focus on the following activities: 
1. Using genetic algorithm techniques to optimize the various parameters of artificial neural network models. 
2. Alternatives to multi fed forward back propagation neural networks and adaptive neuro fuzzy inference system 

approaches for prediction, such as support vector machines and radial basis function networks, are being developed. 
These strategies could provide engineers with a wider range of options when solving engineering difficulties. 
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Supplementary materials 

All the data, results, models, information, and live script codes used in this study can be obtained by contacting the author 
by email at: ali.abdullah1230@gmail.com. 
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