
1
This work is licensed under a Creative Commons Attribution 4.0 International License

Muthanna Journal of Engineering and Technology, Vol. (13), Issue (2), Year (2025)

Muthanna Journal of Engineering and Technology

Website: https://muthjet.mu.edu.iq/

Submitted 8 January 2025, Accepted 1 April 2025, Published online 18 April 2025

Enhancing Method Analysis and Documentation via GUI-Based

Visual Class Diagrams in Object-Oriented Programming

Suaad M.Sabera

a Computer Science Department, Mustansiriyah University, Baghdad, Iraq

* suaad.m.saber@uomustansiriyah.edu.iq

DOI:10.52113/3/eng/mjet/2025-13-02-/1-12

Abstract

The incorporation of GUI-based visual class diagrams in Object-Oriented Programming (OOP) offers a new line towards

enhancing system study and documentation. Traditional class diagrams are robust in specifying the static structure of

systems; however, they can be ambiguous when used in real implementation. The present study addresses the problem of

ambiguity during system documentation and developer understanding in the application of traditional UML class diagrams.

The overall objective is to create a more intuitive visual model that is driven by the behavior of class diagrams combined

with GUI elements, such as forms and reports. In incorporating GUI elements, the programmers will be in a better position

to comprehend system inputs, outputs, and processing. The proposed Visual Class Diagram model introduces certain

specific enhancements towards modeling data administration, relationships, and transactions within system analysis. The

results show that using GUI-based visual class diagrams improves communication between developers and customers,

reduces the likelihood of misunderstanding of system requirements, and generally improves system design and

documentation efficiency. Masu. Research not only provides a complete visual explanation of system elements, but also

concludes that it bridges the gap between theory and practice. Future work will strive to expand this model to enable the

analysis of security, networking and distributed systems with comprehensive equipment for modern software engineering

practices.

Keywords: Attributes, Forms, Operations, Relationships, Reports, Software Engineering, UML (Unified Modeling Language).

1. Introduction

Class diagrams play an important role in object-oriented programming (OOP). This is to provide a snapshot of the structure

of the system that presents the relationships between classes, attributes, and operations [1]. The Unified Modeling

Language (UML) applies primarily to blueprints and provides standard notation for documenting and analyzing the system

[2]. However, traditional UML class diagrams are primarily intended to define static snapshots. This often hides the exact

implementation of system functions, especially when managing complex systems [3]. System analysts and developers

usually find it difficult to understand the interactions between systems, which can lead to potential misunderstandings and

inefficiencies in software development [4]. To address this issue, it was proposed as an extended visual modeling

technology for using class diagrams (GUI) elements. This technology improves the readability of system documents by

including forms, reports, and interactive elements that fill the gap between theory design and practical implementation [5].

The use of Gui-Visual class diagrams is a better representation of system transactions, data flows, and components

interactions, improving communication between developers, end users, and stakeholders [6]. This study suggests a better

model of visual class diagrams using GUI objects aimed at optimised system documents, and aims to improve developers'

understanding of system behavior. In this study, we also explore how this method allows better practices of software

engineering, reduces design design, and optimizes efficient development cycles [7]. This model is evaluated based on

clarity, document validity, and system requirements accuracy [8]. The results show that a visual class diagram of GUI-

based errors can help optimize system implementation and productivity for developers with significantly reduced errors [9].

Future work will focus on expanding this model into additional areas such as security, networking, and distributed systems,

providing a solid foundation for modern software design practices [10]. The contribution of this research in the field of

https://creativecommons.org/licenses/by/4.0/
https://muthjet.mu.edu.iq/

2 Muthanna Journal of Engineering and Technology

object-oriented programming and system documentation is a GUI-supported visual class diagram model that outweighs

traditional UML class diagrams. Contributions solve the problem of ambiguity in system documents. This leads to

misunderstanding and inefficiency in software design. The main goal is to bring elements of the Graphic User Interface

(GUI) along with class diagrams to create a more organized and intuitive view of system elements so that you can better

understand system functionality. To achieve this, this study proposes a solution to accumulate traditional UML class

diagrams with visual elements such as forms, reports, and control components, allowing developers to fulfil data flows,

transactions and systems interactions. Make it easier to visualize. The results show that this approach significantly

improves the clarity of the system's documentation, requirements accuracy, and reduces the likelihood of implementation

errors. Once the theoretical design and implementation gap is closed, the model improves communication between

customers and developers. Software engineering best practices improve and optimize the system development cycle. In the

future, security, sales system support, and networking can be added to the model and converted it into adaptable tools for

existing software development.

2. Literature Review

Unified Modeling Language (UML) class diagrams application has been the primary technique in software engineering

employed for system analysis, design, and documentation. UML provides a standard way of visualizing system structures

because it specifies the classes, the attributes, the methods, and relationships. There are many studies taking into account

the effectiveness of UML modeling in software and particularly its applicability in expressing the system requirements

along with communication for developers, analysts, and stakeholders. Nevertheless, traditional UML class diagrams

primarily depict static system structures and make it difficult for developers to visualize dynamic interactions, data transfer,

and runtime implementation aspects. The need for an improved representation method that would allow more clarity and

less ambiguity in software documentation led to explorations on GUI-based visual enrichments in UML models. Certain

research works identified the disadvantages of traditional UML class diagrams in practical uses. UML traditional diagrams

are not interactive in nature, and therefore it is difficult for the developers to map them directly onto fully working systems

without additional documents. Class diagrams do not capture dynamic system behavior, and therefore the developers have

to supplement them with sequence diagrams, activity diagrams, or other models [11]. These gaps in UML modeling often

lead to misconceptions of the system requirements and thus implementation flaws. Researchers have attempted to extend

the limits of UML modeling by incorporating more intuitive aspects, such as graphical models, interactive mechanisms,

and model-driven development approaches. Incorporation of GUI components into class diagrams has been one primary

area of enhancement that has been proven through research. Studies have shown how system documentation could be

enhanced through visual models by including forms, reports, and control elements within the class diagram framework

itself. Through the incorporation of GUI elements, system processes, inputs, and outputs become more comprehensible to

developers. Additionally, interactive diagrams bridge the distance between hypothetical design and actual implementation,

and the learning becomes more straightforward for incoming developers. Some tools incorporated graphical interfaces into

UML modeling but continued to operate within predefined UML limitations and thus have limited potential to dynamically

convey system-specific behavior. Further studies have examined how visual class diagrams can be used to improve system

documentation effectiveness. From the findings of research, a model-driven approach in which visual extensions to class

diagrams are included makes requirement gathering simpler and reduces ambiguities. Developers were able to implement

systems more successfully when class diagrams were extended with GUI-based representations. Additionally, Unified

Process methods, where UML models serve as the foundation for iterative software development, still present challenges in

representing user interfaces and real-time interactions in class diagrams. The empirical application of extended visual

modeling has also been explored in various software development environments. Studies indicate that UML-based web

engineering models improved software documentation by incorporating data visualization techniques. Empirical research

shows that developers were more likely to develop correct system implementations when they were able to utilize GUI-

enhanced class diagrams [12]. Another avenue explored a component-based modeling approach, in which class diagrams

were paired with functional UI representations to better model business logic and system interactions. Though visual

modeling techniques continue to advance, challenges remain in extending UML for modern software development

requirements. One of the main limitations is the rigidity of UML notation in representing real-time, distributed, and

security-related systems. Additionally, studies have explored the limitations of representing dynamic system behavior,

pointing out that traditional class diagrams do not represent changing software requirements. These issues have motivated

the development of GUI-based Visual Class Diagrams that attempt to combine the benefits of UML with interactive

modeling features to improve developer comprehension, system requirement accuracy, and documentation readability [13].

This literature review identifies the growing need for more effective system documentation methods beyond simple UML

modeling. By integrating GUI-based elements into class diagrams, this study aims to break the constraints of traditional

UML models and provide a more effective tool for system implementation and analysis. The next section will describe the

procedure used to develop and validate the suggested visual class diagram model and demonstrate how it can be practically

used in real software engineering environments.

Table 1 presents a contrast of the best current methods used in system analysis, UML modeling, and software

documentation. It identifies traditional UML class diagrams, model-driven development, GUI-based enriched UML, and

other high-level approaches such as object-role modeling, component-based engineering, and hybrid UML modeling. These

techniques are contrasted with their best parameters, advantages, and limitations, providing insight into how far they have

Muthanna Journal of Engineering and Technology 3

evolved to improve system representation and implementation. Though classical UML is still pervasive, newer approaches

such as AI-supported UML modeling and GUI-based class diagrams provide ample enhancements in readability,

automation, and representation of system interactions. The selection of the suitable approach is based on project demands,

complexity of systems, and requirements for real-time interactions and accuracy of documentation.

Table 1: Comparison of Current Methods in System Analysis and UML Modeling

Method Description Key Parameters Used Advantages Limitations

Traditional UML

Class Diagrams

Standard modeling

technique for object-

oriented system design.

Classes, Attributes,

Methods, Relationships

(Aggregation, Inheritance,

Association, Composition),

Multiplicity, Constraints

Well-structured, widely

used in software

engineering, provides a

clear static system

representation.

Lacks representation of

real-time interactions,

requires supplementary

models for dynamic

behaviors.

Model-Driven

Development

(MDD)

Uses models as the

primary focus for

software design,

generating code from

visual representations.

UML Models, Model-to-

Text Transformations, Code

Generation, Meta-Models

Improves software

consistency, automates

code generation, reduces

manual coding errors.

High learning curve,

requires specialized

tools, limited flexibility

for real-time system

adaptation.

Graphical User

Interface (GUI)-

Enhanced UML

Class Diagrams

Integrates UI elements

(forms, reports) within

UML class diagrams for

better visualization and

documentation.

GUI Components (Forms,

Reports, Control

Components, Event

Handlers), Class

Relationships, Data

Transactions

Enhances system

documentation,

improves requirement

gathering, reduces

implementation errors.

Limited tool support,

increased complexity in

designing the model.

Object-Role

Modeling (ORM)

Focuses on conceptual

schema representation,

emphasizing objects and

their relationships.

Objects, Roles, Fact Types,

Constraints, Cardinality,

Relationships

More expressive than

traditional UML,

suitable for database

design and domain

modeling.

Less intuitive for

developers familiar with

UML, requires

additional learning.

Component-Based

Software

Engineering

(CBSE)

Divides a system into

reusable software

components, improving

modularity.

Components, Interfaces,

Dependency Relationships,

Component Reusability

Facilitates software

reusability, improves

maintainability and

scalability.

Can lead to integration

complexity, dependency

management issues.

Hybrid UML

Modeling

(Combining Class

and Sequence

Diagrams)

Integrates class diagrams

with sequence diagrams

to visualize both static

and dynamic behaviors.

Class Structures, Object

Interactions, Lifelines,

Messages, Sequence Flow

Provides both structural

and behavioral insights,

reduces ambiguity in

documentation.

More complex to

model, increases

diagram size and

readability challenges.

Domain-Specific

Modeling (DSM)

Creates custom modeling

languages tailored to

specific domains.

Domain-Specific Notation,

Custom Constraints, Model

Transformation Rules

Highly specialized,

improves efficiency in

domain-specific

applications.

Requires specialized

knowledge, difficult to

integrate with standard

UML tools.

Automated UML

Tools with AI-

Assisted Modeling

Uses AI to generate UML

diagrams from textual

descriptions or code

analysis.

Natural Language

Processing (NLP), Code

Analysis, Model

Interpretation, AI-based

Suggestions

Reduces manual effort,

improves accuracy,

accelerates system

design.

Still in early stages, AI

predictions may not

always be accurate,

requires human

verification.

Figure 1 is a UML class diagram, a simple object-oriented programming (OOP) concept that depicts the structure of a class

within a system. The class diagram contains three elements: the top element being the class name, used to identify the class

and serve as a blueprint for creating objects; the middle element being the attributes, a collection of the class properties

(variables) and their data types and default values; and the operations (methods) element at the bottom, which defines the

behavior or action that the class can exhibit, including parameters taken in and return type.

This formal syntax allows developers to examine class relationships, responsibilities, and behaviors, and facilitate the fact t

hat systems, documents, and analysis are more easily modeled, documented and analyzed. UML classification diagrams are

 extremely important in software development.

Fig. 1: Class idol

The provided UML class diagrams illustrate important object-oriented programming concepts such as emergency class

representations, active classes, and visibility metrics. The first diagram shows a standard-UML class consisting of three

4 Muthanna Journal of Engineering and Technology

sections: class name, attribute, and operation (method). An attribute defines a class's properties along with data types and

initial values, and an operation declares the behavior or functionality that the class can perform. The second figure

introduces the distinction between active and passive classes, with an active class, represented by a thicker border, initiating

and controlling the flow of execution, whereas passive classes primarily consist of data and offer services to other classes

without controlling the flow of execution. Visibility markers, which regulate access to class attributes and operations, is

another basic concept introduced in the figure. Public (+) methods and variables are accessible from any other class, private

(-) members are restricted to the class itself, and protected (#) members allow access within the class and its subclasses.

These visibility limitations play a crucial role in encapsulation, which is one of the primary principles of object-oriented

programming and allows restricted access to the internal state of an object, thereby enabling modularity and security. In

addition, the use of protected members facilitates inheritance by allowing subclasses to reuse and add to functionality

without exposing sensitive information to unrelated classes [6-9].

Fig. 2: Active Class

Fig. 3: Visibility

Associations represent static relationships between classes. Place association names above, on, or below the association

line. Use a filled arrow to point to the direction of the relationship. Place roles near the end of an association [10-12].

Fig. 4: Associations

The multiplicity of associations represents exactly the numbers between objects (classes) it gives

more features about the amount of relation [7-15]. Place multiplicity notations near the ends of an association. These

symbols indicate the number of instances of one class linked to one instance of the other class. For example, one company

will have one or more employees, but each employee works for one company only.

Fig. 5: Multiplicity

A UML constraint is a condition or restriction that allows new semantics to be specified Linguistically for a model element

[16].

Place constraints inside curly braces {} parenthesis [17].

Muthanna Journal of Engineering and Technology 5

Fig. 6: Constraint

“Composition is a special type of aggregation that denotes a strong ownership between Class A, the whole, and Class B, its

part. Illustrate composition with a filled diamond. Use a hollow diamond to represent a simple aggregation relationship, in

which the "whole" class plays a more important role than the "part" class, but the two classes are not dependent on each

other. The diamond end in both a composition and aggregation relationship points toward the "whole" class or the

aggregate” [18].

Fig. 7: Composition and Aggregation

Fig. 8: Example of an aggregation association

Fig. 9: Example of a composition relationship

Generalization is another name for inheritance or an "is a" relationship. It refers to a relationship between two classes

where one class is a specialized version of another. For example, Honda is a type of car. So the class Honda would have a

generalization relationship with the class car [8].

6 Muthanna Journal of Engineering and Technology

Fig. 10: Generalization

In real-world coding scenarios, the distinction between inheritance and aggregation is often lost because both are concerned

with relationships between classes in object-oriented programming. However, they vary in terms of structure and behavior

nature. Inheritance is an "is-a" relationship in which a subclass inherits characteristics and behaviors from a superclass.

This enables the child class to inherit both public and protected members of the superclass so that attributes and methods

can be reused and extended. For instance, if a base class Vehicle contains a protected method calculateFuelEfficiency(), a

derived class Car can invoke this method, although it is not directly public, since it has inherited it. This construct promotes

code reuse, polymorphism, and hierarchical relationships where subclasses specialize or extend the behavior of a

superclass. Aggregation, on the other hand, is a "has-a" relationship, a weaker association where one class has an instance

of another class but is not inheriting from it. In aggregation, the contained class (aggregate) has access to nothing except the

public members of the contained class, i.e., it cannot see the protected members or methods. This restriction imposes

encapsulation, whereby the contained class is independently functional. For example, if there is a Library class that

aggregates some Book objects, then Library can use only public methods like getTitle() or getAuthor() of Book but not any

of the protected methods of Book. This allows for loose joining of objects, improving the modularity and maintainability of

the system. Most importantly, inheritance is a strong relationship in which a subclass is a specialization of a parent and can

extend or change its behavior. Aggregation, on the other hand, is a weak relationship in which one class simply holds an

instance from another class without extending it. Recognizing these differences is essential for developing adaptive,

sustainable, scalable software architectures [19].

Fig.11: Example of Class Diagram for Student Registration

3. Method

The research process of the project is based on the design and testing of a new GUI-based visual class diagram model. This

integrates traditional UML class diagrams with GUI principles (graphical user interfaces) and supports system analysis and

documentation. The research uses systematic structure, implementation, and evaluation to ensure the success of the

proposed model. First, there was a comparative analysis of existing UML class diagram methods to identify weaknesses of

traditional system representations in terms of clarity, ease of use and applicability. Based on this, this study created an

Student

StdNo

Name

College

Specialist

…

AddStudent()

RemoveStudent()

UpdateData()

StudentMarkRep()

…

Course

CourNo

Name

Prerequisite

College

Specialist

…

AddCourse()

RemoveCourse()

UpdateCourse()

CourseAnalysisRep()

…

Section

StdNo

CourNo

SectionNo

…

AddStudentToSection()

DrawStudent()

UpdateData()

AddSectionMarks()

SectionMarksRep()

…

0..* 1..* 0..* 1..*

Muthanna Journal of Engineering and Technology 7

extended visual class dye diagram model using forms, reports, arrows and control objects to provide a more interactive and

broader representation of system components. The design phase included modelling, attributes, and manipulation of class

relationships with visual accumulation to improve system intuition. In the implementation phase, the proposed visual class

diagram was implemented using object-oriented programming principles and compared to traditional UML class diagrams.

This model was tested in case studies in which developers document and implement sample systems using both visual and

traditional class diagrams. Performance metrics such as implementationability, system requirements validity, and document

clarity were assessed by quantitative analysis and developer surveys. The analysis showed that the visual class diagram

model significantly reduces ambiguity in system design, understanding developers and improving communication between

stakeholders. Furthermore, in this study, how the use of GUI elements improves system visualization and interaction,

allowing developers to visualize inputs, outputs and system processes more efficiently. The proposed method also

facilitated risk analysis of system design, as it allowed customers to intuitively visualize the system structure before the

implementation process began. This study also analyzed the effect of the graphic class diagram model on project

development period, showing significant reductions in system analysis and document times due to improved visibility and

access to system elements. Future work will be directed towards expanding the methodology by including safety

restrictions, networked systems analysis, and distributed computer support so that the model can be adapted to complex

software engineering projects [20-25].

A) Classes represent an abstraction of entities with common characteristics. Associations represent the relationships

between classes.

Fig. 12: Symbols and Notations

B) Visual Component with data management for the transactions (Form, Report, Arrows, and Controls) as the following: -

1) Form Component: - Form component describe each form will built in the system and specify input, output and processes

for each form and show the relationship in the form with other classes also give general look of the form which give clear

idea for the programmer to implement the forms in the system as the following: -

Fig. 13: Form Component

Class Name

+Attribute

- Attribute

#Attribute

+Operation

- Operation

#Operation

1 no more than one

0..1 zero or one

* many

0..* zero or many

1..* one or many

Name

 Form

Form Course Information

L: CorNo

L: Name

L: Colle.

L: Speci.

B: Add B: Remove

B:Ana Report B: Update

Li:

T: Auto No.

T: Validation

Li:

L:PreReq T: Valid. B

Example

8 Muthanna Journal of Engineering and Technology

2) Report Component: - Report component describe each report will generated in the system and specify the data content

(Parameter data, output data, chart, aggregation data...etc) and the report stile (Tabular, Group Report, Matrix Report, Form

Report, Invoice Report, Master detail Report…etc) for each report and show the relationship in the report with other

classes, each report shown the controls content and the aggregation data in report or the chart as the following: -

Fig. 14: Report Component

3) Arrow Component: - Arrow component describe the relationship between the class diagram and the visual component

and specify the data transaction way from the classes, database, reports, chart… etc.

Fig. 15: Arrow Component

4) Controls Component: - Control component describe each attribute or aggregated data in each form or report, each

control in visual class diagram describe the smallest part of system which is input, output or presses control, controls also

can used to describe the validation in the system or lockup tables or classes in system or event in the system and so on.

The controls component can be shown as the following: -

Figure 16: Controls Component

Fig. 16: Controls Component

Report

Report Cor. Analysis Rep.

L: CorNo

L: Name

T: Data

T: Data

Course Information

Year Semester variance

L: Count

L: AVG

A: Sample Count

A: Cour AVG

Example

Label Control L

Button Control B

Text Control T

List Control Li

Image Control X

Aggregation Function Control A

Other Controls (Chart, Link, …) Other

Grid View Control

Muthanna Journal of Engineering and Technology 9

The previous example which we applied in class diagram we also applied in visual class diagram, this example will content

the previous operation and relationship but include two forms and two reports. The first form (Student Information) will

show student data from student class and this form content a button control to generate report (Std Marks Rep). The second

form (Course Information) will show courses data from course class and this form content a button for course prerequisite

validation and a button control to generate report (Cor. Analysis Rep.)

3.

4.

5.

6.

7.

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39. Conclusion

40.
41.
42.
43.

Fig. 17: Visual Class Diagram Example: Schema

Class diagrams are a good modeling for object oriented analysis way can also describe the visual system component with

class but it will not be clear as visual class diagram new notation which describe the system in details for the developer how

will implement the system and give them a clear idea for the out form and report in system visual before the system

implement. Also visual class diagram give a clear idea for the customer how to develop the system in system design which

reduce the risk of system requirement understand, and give visual system design before the implementation phase.

Student

StdNo

Name

College

Specialist

…

AddStudent()

RemoveStudent()

UpdateData()

StudentMarkRep()

…

Course

CourNo

Name

Prerequisite

College

Specialist

…

AddCourse()

RemoveCourse()

UpdateCourse()

CourseAnalysisRep()

…

Section

StdNo

CourNo

SectionNo

…

AddStudentToSection()

DrawStudent()

UpdateData()

AddSectionMarks()

SectionMarksRep()

…

0..* 1..* 0..* 1..*

Form Student Information

L: StdNo

L: Name

L: Colle.

L: Speci.

B: Add B: Remove

B: Report B: Update

Li:

T: Auto No.

T: Validation

Li:

Report Std. Marks Rep.

L: StdNo

L: Name

T: Data

T: Data

Semester Information

Cour No. Name Mark

L: AVG

L: A

Avg

A: Sem Avg

A: Accum. Avg

Report Cor. Analysis Rep.

L: CorNo

L: Name

T: Data

T: Data

Course Information

Year Semester variance

L: Count

L: AVG

A: Sample Count

A: Cour AVG

Form Course Information

L: CorNo

L: Name

L: Colle.

L: Speci.

B: Add B: Remove

B:Ana Report B: Update

Li:

T: Auto No.

T: Validation

Li:

L:PreReq T: Valid. B

10 Muthanna Journal of Engineering and Technology

Algorithm: GUI-Based Visual Class Diagram for System Analysis

1: Define: System Model (SM) with Visual Components

2: Input: System Requirements (SR), UML Class Diagrams (UCD)

3: Initialization: Set Class Structure CS ← ∅, Relationships R ← ∅

4: Output: Enhanced Visual Class Diagram (VCD)

5: for each system requirement sr ∈ SR do

6: Identify related classes C ← ExtractClasses(sr)

7: Define attributes A ← ExtractAttributes(C)

8: Define operations O ← ExtractOperations(C)

9: Define relationships R ← ExtractRelationships(C)

10: end for

11: for each class c ∈ C do

12: Create visual representation Vc ← GenerateVisualClass(c)

13: Assign GUI Components G ← AssignVisualElements(Vc)

14: end for

15: for each relationship r ∈ R do

16: Integrate relationship into visual model VCD ← UpdateDiagram(VCD, r)

17: end for

18: Validate visual representation using system constraints

19: if Validation(SM) == True then

20: Generate final Visual Class Diagram (VCD)

21: else

22: Refine model and repeat validation

23: end if

24: Return VCD

4. Results and Analysis

The results of this study confirm the effectiveness of GUI-enabled Visual Class Diagrams in improving the effectiveness of

system analysis, documentation, and implementation. A comparative evaluation of the traditional UML class diagrams and

the constructed GUI-enabled visual model was conducted on the most important performance indicators of lucidity,

implementation effectiveness, requirement validity, and developer satisfaction. The study involved the case study approach,

where both the traditional UML diagrams and the GUI-based visual class diagrams were used by the developers to model

and implement a test system. The performance of the two techniques was compared with respect to feedback from the

developers, quality of documentation, and error rates of implementation. Performance measurement and a survey were

conducted among a set of software developers and system analysts to assess the impact of the GUI-based class diagrams.

The key parameters that were considered are document clarity, comprehensibility, implementation duration, and precision

of system specifications. Results are illustrated in the table given below:

Table 2: Comparison of Traditional UML vs. GUI-Based Visual Class Diagrams

Metric Traditional UML Class

Diagram

GUI-Based Visual Class

Diagram

Improvement (%)

Clarity in System

Documentation

65% 90% +38%

Ease of Understanding 60% 88% +47%

Implementation Time (hours) 15 10 -33%

Requirement Accuracy 70% 92% +31%

Developer Satisfaction 62% 89% +44%

It is evident from the findings that graphical class diagrams with GUI immensely improve system readability and developer

comprehension compared to basic UML diagrams. The 33% saving in implementation time indicates that the model

enhances software development efficiency. The accuracy in requirements also improved by 31%, reducing the likelihood of

misunderstandings in system design. Error rates during system implementation were also a significant measure assessed.

Developers using traditional UML attempted to map system elements, resulting in higher errors during implementation.

The following table specifies the average error rates that occurred in both approaches:

Muthanna Journal of Engineering and Technology 11

Table 3: Reduction in Errors During System Implementation

Error Type Traditional UML (%) GUI-Based Visual Class Diagram (%) Reduction (%)

Incorrect Attribute Definition 12% 5% -58%

Misinterpretation of Class Roles 18% 6% -67%

Incorrect Method Implementation 15% 7% -53%

Misunderstood System Relationships 20% 8% -60%

These results show that GUI-based diagrams significantly reduce errors during system implementation by representing a

more intuitive view of system components and their interactions. Visual presentation of reports, forms, and controls allows

developers to better understand system data flow and user interaction. This means fewer misunderstandings and flawed

implementations. To better validate the effectiveness of the proposed model, developer feedback is collected on Likert

scales (1-5), which are "very difficult" 1 and "very simple". Usability reviews can be found on the table:

Table 4: Developer Feedback and Usability Assessment

Assessment Criteria Traditional UML (Avg.

Rating)

GUI-Based Visual Class Diagram (Avg.

Rating)

Ease of Learning 3.0 4.5

Visualization of System Components 3.2 4.7

Ease of Implementation 3.1 4.6

Clarity in Understanding System

Behavior

3.0 4.8

The feedback results confirm that GUI-based diagrams for developers are much easier to learn, understand and implement

than traditional UML diagrams. Clarity of considering system objects was assessed in the evaluation of success that

successfully included GUI characteristics such as forms, reports, and relevance within the class diagram. The conclusion of

this study is that GUI-based visual class diagrams are effective and practical alternatives to traditional UML class diagrams.

Including GUI elements (graphical user interfaces) such as formal representations, control elements, and relationship

visualizations, the proposed model bridges the gap between system design and implementation, reducing errors and

misunderstandings. Programmer quality A dramatic increase in the quality of documentation, requirements accuracy, and

productivity justify the practical benefits of such an approach. Furthermore, this study showed that programmers were

willing to work with GUI-based models as they provided visual illustrations of system components and facilitated the

allocation of designs to functional software. I did. Reducing implementation errors indicates that the proposed model

reduces rework and debugging times, making system development faster and more accurate. Based on the results, GUI-

based visual class diagrams can be said to improve system documentation, understand developers, and reduce

implementation. An integrated visual approach allows for a more accurate view of system elements and interactions,

making it a valuable resource for system analysts, software engineers and project managers. You can further expand your

models to protect analytics, distributed systems and real-time system analyses in future research, and expand applications

with the latest software engineering.

5. Conclusion and Future Work

This study suggested the addition of GUI-based Visual Class Diagram as an extension of traditional UML class diagram to

boost system analysis, documentation, and implementation rate. The results show that including graphical user interface

(GUI) elements such as control components, forms, and reports in class diagrams goes a long way towards boosting clarity,

requirement accuracy, and developer comprehension. The comparative analysis of traditional UML class diagrams and

GUI-based visual models showed a 38% increase in document readability, a 47% improvement in comprehensibility, and a

31% improvement in requirement precision. Rates of errors while applying the system were also reduced by over 50%,

attesting that the proposed model provides lower levels of misinterpretation and system design errors. Despite these

improvements, there are some limitations. Creating visual class diagrams with GUI involves additional effort and tool

support because current UML modeling tools are not specifically designed to support interactive elements within class

structures. Furthermore, while the model improves static system representation, it does not well support dynamic behavior

modeling, which remains a problem in complex real-time or distributed systems. For future work, the model can be

expanded further by including security constraints, system modeling based on networks, and real-time interactions between

systems to provide a richer graphical representation. The inclusion of AI-based automated class diagram generation could

further increase the level of automation in system analysis and documentation. Extending the model to cloud-based and

distributed systems would also render the model more applicable to modern software engineering practices. Through such

fill-ins, the Visual Class Diagram model in GUI format can become a formidable tool for system analysts, project managers,

and software engineers for designing software systems that are friendly to use, well documented, and bug free.

12 Muthanna Journal of Engineering and Technology

References

[1] I. Sommerville, Software Engineering, 8th ed. Boston, MA: Addison-Wesley, 2007.

[2] Embarcadero Technologies, "UML Class Diagrams Overview," [Online]. Available: http://edn.embarcadero.com/article/31863.

[Accessed: Jan. 2025].

[3] Wikipedia, "Class Diagram," [Online]. Available: http://en.wikipedia.org/wiki/classdiagram. [Accessed: Jan. 2025].

[4] S. Bell, "Modeling with Class Diagrams," IBM DeveloperWorks, 2004. [Online]. Available:

http://www.ibm.com/developerworks/rational/library/content/rationaledge/sep04/bell/.

[5] SmartDraw, "UML Class Diagram Tutorials," [Online]. Available: http://www.smartdraw.com/resources/tutorials/uml-class-

diagrams/. [Accessed: Jan. 2025].

[6] M. Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Language," 3rd ed., Addison-Wesley, 2003.

[7] B. Selic, "The Pragmatics of Model-Driven Development," IEEE Software, vol. 20, no. 5, pp. 19–25, Sept. 2003.

[8] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3rd ed.

Upper Saddle River, NJ: Prentice Hall, 2005.

[9] "UML Tutorial: Class Diagrams," Engineering Notebook Column, C++ Report, 1997. [Online]. Available: faculty.ksu.edu.sa.

[10] R. Norman, "Lecture Notes on UML Class Diagrams," [Online]. Available: www-

rohan.sdsu.edu/faculty/rnorman/course/ids306/lectc6:ppt.

[11] R. D. Sarreb and F. Al-Obaisi, "Assignment on UML: Use Case and Class Diagrams," Sheffield Hallam University, 2008.

[12] I. Jacobson, G. Booch, and J. Rumbaugh, "The Unified Modeling Language," Unix Review, Sept. 27, 1996.

[13] S. Meng and B. K. Aichernig, "Towards a Coalgebraic Semantics of UML: Class Diagrams and Use Cases," Electronic Notes in

Theoretical Computer Science, vol. 82, 2003.

[14] N. Koch and A. Kraus, "The Expressive Power of UML-Based Web Engineering," in Proc. 2nd Int. Workshop on Web-Oriented

Software Technologies, 2002.

[15] N. Koch, R. Hennicker, and A. Kraus, "The Authoring Process of the UML-Based Web Engineering Approach," in Proc. 1st Int.

Workshop on Web Engineering, 2001.

[16] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference Manual, 2nd ed. Addison-Wesley, 2004.

[17] P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1991.

[18] R. E. Gomaa, Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures. Cambridge University Press,

2011.

[19] J. Arlow and I. Neustadt, UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design. Addison-Wesley, 2005.

[20] D. F. D'Souza and A. C. Wills, Objects, Components, and Frameworks with UML: The Catalysis Approach. Addison-Wesley, 1998.

[21] J. Parsons and Y. Wand, "Emancipating Instances from the Tyranny of Classes in Information Modeling," ACM Transactions on

Database Systems, vol. 25, no. 2, pp. 228–268, 2000.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, 1994.

[23] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in Practice. Morgan & Claypool Publishers, 2012.

[24] G. Booch, Object-Oriented Analysis and Design with Applications, 3rd ed. Addison-Wesley, 2007.

[25] T. Quatrani, Visual Modeling with Rational Rose 2002 and UML. Addison-Wesley, 2002.

http://edn.embarcadero.com/article/31863
http://en.wikipedia.org/wiki/classdiagram
http://www.ibm.com/developerworks/rational/library/content/rationaledge/sep04/bell/
http://www.smartdraw.com/resources/tutorials/uml-class-diagrams/
http://www.smartdraw.com/resources/tutorials/uml-class-diagrams/

