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Abstract 
 

Phase change material (PCM) integrated solar water heating systems represent a critical technology for sustainable energy 

applications, yet face significant performance limitations due to poor thermal conductivity and lack of intelligent control 

optimization. This study aims to develop and validate a novel machine learning-driven optimization control technique for 

PCM-based solar water heating systems. The methodology employs a comprehensive three-phase mathematical model 

encompassing pre-melting, melting transition, and post-melting thermal dynamics, coupled with a neural network controller 

operating on real-time environmental data to predict optimal pump flow multipliers. Comprehensive simulation validation 

across five environmental conditions and three PCM materials demonstrated consistent performance improvements with 

energy storage enhancements of 2.5-4.1% (3.3% average) and heat transfer enhancement ratios of 1.03-1.04×. This research 

provides the first complete ML-based control system for PCM thermal energy storage with retrofit-compatible optimization 

requiring no hardware modifications, offering a quantifiable performance benefit for existing installations. 
 

Keywords: Intelligent Control; Machine Learning Optimization; Phase Change Materials; Renewable Energy Systems; Solar Water 

Heating. 

1. Introduction 

The world's energy situation is unprecedented, with rising energy needs coming in line with climate change mitigation 

imperatives, necessitating an accelerated transition to sustainable energy systems. The International Energy Agency estimates 

the share of buildings in world energy consumption to be around 40% [1], of which space heating and domestic hot water are 

the largest end-use applications [2]. This strong demand, coupled with the context and volatile prices of fossil fuels, has 

driven research and development (R&D) in renewable energy technologies with efficient, cost-effective alternatives to 

conventional heating technologies [2]. Solar thermal energy has been a well-established, low-cost technology to meet 

building thermal needs, and more than 500 GW thermal capacity installations have been implemented globally as of 2023 

[3]. 
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Solar water heaters are among the most effective proven renewable energy technologies with measurable performance under 

different climatic conditions around the globe. Solar radiation intermittence is, however, a serious problem in ensuring a 

steady thermal energy supply, particularly at low irradiance or night operations [4]. Traditional systems have faced time 

mismatches between supply and demand of energy, having a tendency to be overdimensioned for collector areas or backup 

heaters in order to be acceptably performing [5]. These limitations have spurred extensive research activities in thermal 

energy storage (TES) technologies with the potential to efficiently absorb, store, and release thermal energy in order to bridge 

the gap between the availability of solar energy and users' demand patterns [6]. 

Phase change materials (PCM) are particularly promising for latent heat thermal energy storage since they can store high 

capacities of thermal energy at low temperature ranges through solid-liquid phase change. Compared to sensible heat storage 

systems with cyclical temperature changes in charging and discharging operations, PCM-based systems have comparatively 

stable temperatures during phase changes with better thermal stability and energy storage density [7]. The breakthroughs 

demonstrate energy storage densities of 150-250 kJ/kg for organic compounds and 300-400 kJ/kg for inorganic compounds, 

which are huge advances over conventional sensible heat storage media [8]. Applications of PCM in solar thermal systems 

can reduce collector area needs by 20-30% with comparable thermal performance, improving system economics overall [9]. 

Despite such advantages, PCM-based thermal energy storage systems have technical shortcomings that can hinder 

widespread commercialization. Relatively low thermal conductivity of most potential PCM materials (commonly 0.1-0.5 

W/m·K) causes unfavorable heat transfer behavior and long charging/discharging time, resulting in poor system 

responsiveness [10]. Challenges such as supercooling of inorganic PCMs, thermal degradation in cycling, and encapsulation 

of organic material remain key engineering issues [11]. Most of the work at present is material-level enhancement, i.e., 

dispersion of nanoparticles, embedding of metal foam, and cutting-edge encapsulation techniques, which exhibit excellent 

performance at traditionally high added cost and complexity [12]. 

Machine learning and intelligent control systems in thermal energy systems have also picked up speed due to advances in 

computing power, sensor networks, and data analytics [13]. Machine learning algorithms have succeeded in optimizing 

building energy systems with 10-30% energy savings reported by smart heating, ventilation, and air conditioning (HVAC) 

control, predictive maintenance, and demand response optimization [14]. However, machine learning deployment to PCM 

thermal energy storage optimization is remarkably underutilized, and it is a massive research opportunity. The nonlinear, 

multivalued nature of PCM system thermal dynamics and highly variable environmental conditions create the ideal set of 

circumstances for machine learning-based optimization techniques that are capable of optimally operating systems in real 

time to prevailing conditions and established patterns of performance [15]. 

This paper fills the research gap by developing and verifying a novel machine learning-informed control optimization strategy 

for PCM-integrated solar water heaters. The study investigates the dynamic thermal response of PCM materials under 

different environmental conditions, comparing conventional fixed-speed pump control with variable-speed smart 

optimization strategies. The study involves analytical mathematical modeling of three-phase PCM thermal dynamics, 

developing and training neural network-based control algorithms, and rigorous simulation-based verification across different 

operating conditions. 

The significant contributions include the design of the machine learning-based control optimization approach for PCM-

integrated solar water heaters, the design of the complete three-phase mathematical model representing pre-melting, melting 

transition, and post-melting thermal behaviors, comprehensive evaluation under five various environmental conditions, and 

design of a retrofit-compatible optimization technique with only software adjustments and slight sensing hardware. The study 

provides reproducible quantitative performance assessment with energy storage improvements of 2.5-4.1% for various PCM 

materials, indicating that very high performance improvement can be achieved through control optimization alone while 

augmenting existing physical enhancement methods. 

 

2. Related Work 

Development of phase change material (PCM) thermal energy storage systems is a focused research area with studies 

focusing on improving heat transfer characteristics, energy storage capacity, and system performance. Three methods of 

improvement are emphasized in the literature: physical upgrading, geometry design improvement, and system integration 

techniques. However, significant focus has been on intelligent control optimization methods, suggesting a knowledge gap 

that this work attempts to bridge. 

Modification of nanoparticles is the most studied physical modification technique in current PCM investigations. Dayer et 

al. (2024) [16] conducted experimental work on improving thermal performance by using Al₂O₃ nanoparticles in PVT water 

harvesting systems and attaining up to 32% thermal conductivity improvements with associated electrical (14%) and thermal 

efficiency (72%) increases in the laboratory setting. Optimum concentrations are 0.5% to 2% weight, and nanoparticle 

dispersion homogeneity and concentration are crucial factors. Tamizharasan et al. (2024) [17] explored silicon carbide (SiC) 

nanoparticle addition to PCM/PVT systems with similar efficiency improvement while addressing long-term nanoparticle 

settling stability issues. These studies demonstrate significant performance improvement but cite implementation issues like 

high material costs, potential agglomeration, and complex manufacturing processes. 

Other physical enhancement techniques aim at low-cost industrial substitutes. Prieto et al. (2021) [18] proposed metal wool 

infiltration to enhance PCM thermal conductivity in high-temperature solar process heat applications (150-500°C), with a 

maximum of 4.34 W/m·K conductance improvement over conventional organic PCM materials with less than 1 W/m·K 

conductivity. Yousef et al. (2020) [19] empirically confirmed metal wool enhancement for solar still latent heat storage 
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systems with 25% productivity improvement. Metal wool enhancement has the benefits of material costs and scalability of 

production, particularly for industrial use in mass production. Geometric enhancement techniques are substitute methods to 

material enhancements. Vempally et al. (2024) [20] studied the solidification behavior of copper-water nanofluids in wavy-

wall enclosures and demonstrated that surface waviness controls the solidification times and enhances heat transfer 

performance. Numerical modeling showed sinusoidal wavy wall geometries achieved 30-80% melting time reductions 

compared to flat-wall geometries, where the gain depended on wave amplitude and frequency parameters.  

Literature review suggests that while tremendous strides have been made in physical and geometric improvement methods, 

software optimization potential remains largely unexploited. Current improvement methods require huge capital expenses, 

sophisticated high-technology manufacturing process steps, or complete system redesigns that limit applicability to installed 

equipment. Research motivation is provided by this demand. Intelligent control approaches that provide substantial 

performance gains based on software modifiability alone, along with retrofit compatibility and cost economies, are developed. 

The machine learning optimization strategy presented here is a new PCM improvement contribution that addresses real-world 

deployment issues while guaranteeing quantifiable performance enhancements over general operating conditions. 

 

3. Methodology 

3.1 Dataset Description and System Parameters 

The comprehensive simulation study utilized a well-chosen dataset of five various phase change materials (PCM) and 

different environmental conditions for comparing the thermal performance of solar water heating systems. Figure 1. displays 

the system design and key parameters utilized in this study. 

 
Fig. 1: Schematic diagram of PCM-integrated solar water heating system with component specifications [Adapted from 

21]. 

Table 1 provides a summary of the full thermophysical properties and system parameters of all the PCM materials used in 

this study. 

Table 1: PCM Material Properties and System Parameters 

Parameter P01 P02 P03 P04 P05 Unit 

PCM Properties 

Melting Temperature (Tmelt) 44.0 44.0 44.0 44.0 44.0 °C 

Solid Specific Heat (C_ps) 2100 2100 2100 2100 2100 J/kg·K 

Liquid Specific Heat (C_pl) 2300 2300 2300 2300 2300 J/kg·K 

Heat of Fusion (Hf) 165000 165000 165000 165000 165000 J/kg 

Density (ρ_p) 850 850 850 850 850 kg/m³ 

System Configuration 

Tank Length (L) 1.0 1.0 1.0 1.0 1.0 m 

Tank Diameter (diam) 0.5 0.5 0.5 0.5 0.5 m 

PCM Volume (Vp) 0.05 0.03 0.025 0.025 0.035 m³ 

PCM Surface Area (Ap) 5.0 3.0 2.5 2.5 3.5 m² 

Heat Transfer Parameters 

Coil Area (Ac) 2.5 2.5 2.5 2.5 2.5 m² 

Water-Coil HTC (hc) 1500 1500 1500 1500 1500 W/m²·K 

PCM-Water HTC (hp) 800 800 800 800 800 W/m²·K 

Operating Conditions 

Initial Temperature (Tinit) 40.0 40.0 40.0 40.0 40.0 °C 
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Simulation Duration (tfinal) 50400 50400 50400 50400 50400 s 

Time Step (tstep) 100 100 100 100 100 s 

 

The heat transfer coefficients hc and hp represent forced convection conditions calculated using the Dittus-Boelter correlation 

for turbulent flow in pipes, with values determined based on typical water flow rates of 0.02-0.05 m/s and Reynolds numbers 

in the range of 2000-5000 [26]. 

The environmental data set comprises five distinct scenarios created to portray the variation in solar irradiance and ambient 

conditions: Summer Sunny (high irradiance, favorable conditions), Winter Cloudy (low irradiance, unfavorable conditions), 

Summer Variable (variable irradiance), Winter Sunny (medium irradiance, low ambient temperature), and Summer Cloudy 

(reduced irradiance, moderate ambient temperature). Each scenario incorporates realistic solar irradiance profiles, ambient 

temperature variations, and seasonal effects to enable comprehensive system testing under diverse operating conditions. 

It should be noted that the PCM materials P01-P05 differ only in system configuration parameters (volume, surface area) 

while maintaining identical thermophysical properties, allowing for comparative analysis of geometric effects on thermal 

performance. 

Table 2: Environmental Scenario Parameters [27] 

Scenario Peak Irradiance (W/m²) Seasonal Factor Efficiency Ambient Temperature 

(°C) 

Duration (hours) 

Summer Sunny 800 1.0 0.7 25 14 

Winter Cloudy 400 0.7 0.5 15 14 

Summer Variable 600 1.0 0.6 22 14 

Winter Sunny 600 0.7 0.65 18 14 

Summer Cloudy 500 1.0 0.55 23 14 

3.2 Mathematical Modeling Framework 

The thermo-dynamic performance of the solar water heating system with PCM is governed by a general set of differential 

equations modeling the dynamic heat transfer processes, phase change, and system interactions. The mathematical model is 

developed according to three stages of operation of the PCM: pre-melting (solid state), melting transition, and post-melting 

(liquid state). 

The mathematical model assumes no external heating load during simulation periods, focusing on energy storage 

performance under solar input conditions. Heat losses to ambient environment are neglected to isolate the PCM 

enhancement effects. 

Phase 1: Pre-Melting Dynamics 

During the initial heating phase, when the PCM temperature is below the melting point, the system dynamics are modeled 

by the following system of coupled ordinary differential equations: [22] 

𝑑𝑇𝑤

𝑑𝑡
=  (

1

𝜏𝑤
) ×  [(𝑇𝑐(𝑡) −  𝑇𝑤) +  𝜂 × (𝑇𝑝 −  𝑇𝑤)]    (1) 

𝑑𝑇𝑝

𝑑𝑡
=  (

1

𝜏𝑝𝑠
) × (𝑇𝑤 −  𝑇𝑝)                                                  (2) 

Where: 

- 𝑇𝑤 and 𝑇𝑝 are water and PCM temperatures, respectively 

- 𝑇𝑐(𝑡) is the coil temperature with time dependence according to solar irradiance 

- 𝜏𝑤 =  (𝑀𝑤 ×  𝐶𝑤)/(ℎ𝑐 ×  𝐴𝑐) is the water thermal time constant 

- 𝜏𝑝𝑠 =  (𝑀𝑝 ×  𝐶𝑝𝑠)/(ℎ𝑝 ×  𝐴𝑝) is the solid PCM thermal time constant 

- 𝜂 =  (ℎ𝑝 ×  𝐴𝑝)/(ℎ𝑐 ×  𝐴𝑐) is the heat transfer coupling parameter 

The dynamic coil temperature is calculated based on solar input parameters: [23] [24] 

𝑇𝑐(𝑡) =  𝑇𝑎𝑚𝑏 +
𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 × 𝐼𝑠𝑜𝑙𝑎𝑟(𝑡)

20
                      (3) 

𝐼𝑠𝑜𝑙𝑎𝑟(𝑡) =  𝐼𝑚𝑎𝑥 × sin (𝜋 ×
𝑡 ℎ𝑜𝑢𝑟𝑠 −  𝑠𝑢𝑛𝑟𝑖𝑠𝑒

𝑠𝑢𝑛𝑠𝑒𝑡 −  𝑠𝑢𝑛𝑟𝑖𝑠𝑒
)    (4) 

 

where sunrise and sunset times are calculated for a reference location at 33°N latitude, 44°E longitude (representative of 

Middle Eastern climate conditions). 

Phase 2: Melting Transition 

As the PCM temperature increases to the melting point (𝑇𝑚𝑒𝑙𝑡), the phase change zone is entered by the system, a zone of 

isothermal heat absorption. The equations governing the system are now: 
𝑑𝑇𝑤

𝑑𝑡
=  (

1

𝜏𝑤
) ×  [(𝑇𝑐(𝑡) −  𝑇𝑤) +  𝜂 ×  (𝑇𝑚𝑒𝑙𝑡 −  𝑇𝑤)]  (5) 

𝑑𝑇𝑝

𝑑𝑡
=  0                                                                                            (6) 
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𝑑𝑄𝑝

𝑑𝑡
=  ℎ𝑝 ×  𝐴𝑝 × max(0, (𝑇𝑤 −  𝑇𝑚𝑒𝑙𝑡))                        (7) 

where Qp is the total latent heat energy stored during melting. The melting phase continues until the total latent heat capacity 

is reached: 

𝑄𝑝, 𝑚𝑎𝑥 =  𝐻𝑓 ×  𝑀𝑝                                                                  (8) 

Phase 3: Post-Melting Dynamics 

Once the phase change process is over, the system moves into liquid PCM operation with changed thermal properties: 
𝑑𝑇𝑤

𝑑𝑡
=  (

1

𝜏𝑤
) × [(𝑇𝑐(𝑡) −  𝑇𝑤) +  𝜂 ×  (𝑇𝑝 −  𝑇𝑤)]        (9) 

𝑑𝑇𝑝

𝑑𝑡
=  (

1

𝜏𝑝𝑙
) ×  (𝑇𝑤 −  𝑇𝑝)                                                        (10) 

where 𝜏𝑝𝑙 =  (𝑀𝑝 ×  𝐶𝑝𝑙)/(ℎ𝑝 ×  𝐴𝑝) is the liquid PCM's thermal time constant, incorporating the different liquid phase 

specific heat capacity. Figure 2. describes the three-phase modeling approach with automatic phase transition detection. 

 
Fig. 2: Three-phase mathematical modeling framework for PCM thermal dynamics. 

3.3 Energy Balance Calculations 

The system's overall energy balance encompasses both the latent and sensible heat storage terms: 

Phase 1 Energy (Pre-melting): 

𝐸𝑊𝑎𝑡𝑒𝑟 =  𝐶𝑤 ×  𝑀𝑤 ×  (𝑇𝑤 −  𝑇𝑖𝑛𝑖𝑡)                      (11) 

𝐸𝑃𝐶𝑀 =  𝐶𝑝𝑠 ×  𝑀𝑝 ×  (𝑇𝑝 −  𝑇𝑖𝑛𝑖𝑡)                          (12) 

Phase 2 Energy (Melting): 

𝐸𝑊𝑎𝑡𝑒𝑟 =  𝐶𝑤 ×  𝑀𝑤 ×  (𝑇𝑤 −  𝑇𝑖𝑛𝑖𝑡)                      (13) 

𝐸𝑃𝐶𝑀 =  𝐸𝑝𝑚𝑒𝑙𝑡, 𝑖𝑛𝑖𝑡 + max(0, 𝑄𝑝)                            (14) 

Phase 3 Energy (Post-melting): 

𝐸𝑊𝑎𝑡𝑒𝑟 =  𝐶𝑤 ×  𝑀𝑤 ×  (𝑇𝑤 −  𝑇𝑖𝑛𝑖𝑡)                      (15) 

𝐸𝑃𝐶𝑀 =  𝐸𝑝𝑚𝑒𝑙𝑡, 𝑖𝑛𝑖𝑡 +  𝐸𝑝, 𝑚𝑒𝑙𝑡3 +  𝐶𝑝𝑙 ×  𝑀𝑝 ×  (𝑇𝑝 −  𝑇𝑚𝑒𝑙𝑡)(16) 

where 𝐸𝑝𝑚𝑒𝑙𝑡, 𝑖𝑛𝑖𝑡 =  𝐶𝑝𝑠 ×  𝑀𝑝 ×  (𝑇𝑚𝑒𝑙𝑡 −  𝑇𝑖𝑛𝑖𝑡) and 𝐸𝑝, 𝑚𝑒𝑙𝑡3 =  𝐻𝑓 ×  𝑀𝑝 are the melting initiation energy 

and total latent heat energy, respectively. 

3.4 Machine Learning Optimization Framework 

The ML model training utilized a large meteorological dataset of 8,760 hourly observations through a full annual cycle of 

environmental parameters. Figure 3 illustrates the statistical characteristics and distributions of the training set, indicating 

input feature variability and representativeness used in model development. The distribution of solar irradiance demonstrates 

the expected characteristics of representative solar resource data, and the values of Global Horizontal Irradiance (GHI) have 

an extremely high frequency in the interval 0-400 W/m², as is typical for daily and seasonal patterns. The distribution of 

temperature is generally distributed about 10°C, with all of the surrounding conditions encountered throughout temperate 

climates in its range. 

The diurnal solar pattern analysis illustrates the standard sinusoidal irradiance curve of 500 W/m² at noon and zero irradiance 

during night (hours 0-5 and 18-24). The temporal behavior is such that it covers the whole diurnal cycle of available solar 

energy so that optimization can be properly performed in all operation periods. The target pump speed distribution shows a 

strongly skewed distribution towards the lower values (0.3-0.6), i.e., optimal performance is usually realised with lower flow 

rates than for conventional fixed-speed control, particularly in low-irradiance operation. The target efficiency distribution is 

more spread out (30-80%), describing the multifaceted dependence of environmental conditions and optimum operation of 

the system. 

The correlation matrix of features provides precious data on interdependence between input parameters and their relation to 

target optimization parameters. High values of positive correlation occur between different solar irradiance components (GHI, 

DNI, DHI) because they stem from physical dependencies between them. Moderate temporal parameter correlations (Hour, 

Month) with solar irradiance confirm the significance of time-variable factors in optimization algorithms. Notably, the 
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correlation analysis reveals intricate, non-linear dependency relationships between maximum pump speed and various input 

parameters, which lends rationale for the use of neural network structures that can identify such sophisticated dependencies 

rather than the simpler linear regression methods. 

 
Fig. 3: Statistical characteristics and distributions of training set: (a) Solar irradiance distribution, (b) Temperature 

distribution, (c) Diurnal solar pattern, (d) Target pump speed distribution, (e) Target efficiency distribution, (f) Feature 

correlation matrix. 

The ML controller architecture consists of an input layer receiving eight environmental and system parameters, three hidden 

layers containing 64, 32, and 16 neurons, respectively, and an output layer providing pump speed optimization factors. 

The ML model receives the following input vector: 

𝑋 =  [𝐺𝐻𝐼, 𝐷𝑁𝐼, 𝐷𝐻𝐼, 𝑇𝑎𝑚𝑏, 𝑊𝑠𝑝𝑑, 𝑅𝐻𝑢𝑚, 𝐻𝑜𝑢𝑟, 𝑀𝑜𝑛𝑡ℎ]  (17) 

where 𝐺𝐻𝐼, 𝐷𝑁𝐼, and 𝐷𝐻𝐼 are global, direct, and diffuse horizontal irradiance, respectively, and 𝑇𝑎𝑚𝑏, 𝑊𝑠𝑝𝑑, and 𝑅𝐻𝑢𝑚 

are ambient temperature, wind speed, and relative humidity. 

The optimization strategy tunes the water thermal time constant through intelligent pump speed control: 

𝜏𝑤, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 =  (
𝑓𝑙𝑜𝑤𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝜏𝑤
) ×  𝑏𝑎𝑠𝑒𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     (18) 

𝑓𝑙𝑜𝑤𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  𝑀𝐿𝑚𝑜𝑑𝑒𝑙(𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑)                                      (19) 

The ML model was trained over a comprehensive dataset of 8760 hourly weather data points with synthetic target 

optimization values calculated based on thermal performance principles. Training was accomplished with Adam optimization 

and mean squared error loss function for 100 epochs, achieving 90% prediction accuracy for validation data. Figure 4 displays 

the neural network architecture and optimization process. 
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Fig. 4: Neural network architecture for PCM system optimization. 

3.5 Simulation Methodology and Implementation Framework 

The integrated simulation method incorporates mathematical modeling, ML optimization, and numerical solution techniques 

in a systematic process for evaluating PCM-integrated solar water heating systems under different operating conditions. 

Figure X presents the step-by-step flowchart of the simulation method, detailing the chronology of processes from system 

initialization to results analysis. The integrated simulation methodology follows the systematic workflow shown in Figure 5. 

 
Fig. 5: Simulation workflow for PCM system performance evaluation. 

The simulation workflow begins with system initialization, where PCM material properties and system design parameters 

are loaded from the dataset. The selection of environmental scenarios determines the actual weather conditions and solar 

irradiance profiles for use in the simulation run. The process then splits based on the control strategy: conventional fixed-

speed pump control or ML-optimized variable control. 

For ML-optimized simulations, the neural network controller acts on real-time system and environmental state information 

to calculate ideal pump flow multipliers. The mathematical modeling phase uses the appropriate differential equations based 

on the PCM phase state at the moment, with automatic phase change detection for accurate phase change modeling. Dynamic 

solar input calculation updates coil temperature in real time based on time-varying irradiance profiles and environmental 

conditions. 

3.6 Numerical Solution Method and Implementation 

The system of differential equations is solved using the Runge-Kutta method as implemented in SciPy's solve_ivp function 

with adaptive time stepping. Phase change is handled by event detection routines, which trigger system reconfiguration at 
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melting onset or completion. The numerical system is energy-conserving under strict bounds checking and is numerically 

stable with tolerance parameters (relative tolerance: 1×10⁻⁶, absolute tolerance: 1×10⁻⁹). 

The iterative solution process is repeated until the desired simulation time is reached, with continuous monitoring of the 

system state variables and automatic detection of phase change. The energy balance computations at each time step calculate 

the thermal energy stored in the water and PCM elements. The simulation program incorporates comprehensive error-

checking subroutines to ensure physical validity of results, including temperature limits checking, energy conservation 

checking, and phase change consistency checks. 

After completing the temporal integration, performance metrics are calculated to numerically assess system performance. 

Improvement factors are determined by comparing ML-optimized performance against conventional control baselines. 

Energy improvement percentages, temperature improvement ratios, and heat transfer efficiency gains are calculated 

systematically to assess the optimization benefits. All simulation cases are executed with identical numerical parameters so 

that a fair comparison can be established between conventional and ML-optimized control strategies. 

The results analysis phase generates comprehensive output datasets that include temperature profiles, energy storage curves, 

comparative performance tables, and improvement visualizations. The step-by-step process ensures reproducible results and 

enables robust statistical analysis of the optimization gains for different PCM materials and ambient conditions. 

4. Results and Discussion 

4.1 Dynamic Performance Analysis Under Variable Environmental Conditions 

The rigorous simulation-based study investigated the thermal performance of PCM-integrated solar water heating systems 

under different environmental conditions, which include seasonal variation and weather. Figure 6 illustrates the comparative 

analysis of energy storage performance, water temperature profiles, and system efficiency under five different operating 

conditions: Summer Sunny, Winter Cloudy, Summer Variable, Winter Sunny, and Summer Cloudy conditions. 

 
Fig. 6: Comparative analysis of energy storage performance: (a) Energy storage by PCM material and condition, (b) Water 

temperature profiles, (c) Performance efficiency heatmap 

The contrast of the energy storage in different PCM materials and under different environmental conditions reveals 

tremendous differences in performance. For perfect Summer Sunny, the optimal material P01 exhibited the greatest energy 

storage capability with approximately. 1.55 ×  107𝐽 of total stored energy, much higher than other materials under the same 

environment. This outstanding performance can be explained by the synergistic action of maximum solar irradiance and the 

thermal response of P01 with optimum phase change behavior within the operating temperature interval. Winter Cloudy 

conditions provided considerably lower energy storage for all PCM materials from 2.5 × 106𝐽 𝑡𝑜 7.0 ×
 106𝐽,Demonstrating the critical contribution of solar input availability in PCM systems. 

The thermal performance analysis through water temperature illustrates uniform thermal behavior under various conditions, 

with final temperatures of the water between 35°C and 50°C as a function of environmental conditions and choice of PCM 

material. Interestingly, temperature profiles vary little between varying PCM materials when subjected to the same 
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environmental conditions, indicating that the key differentiator is in energy storage capacity rather than in the capability to 

regulate temperature. Performance heatmap provides an overall visualization of comparative system performance efficiency, 

wherein Summer Sunny conditions are consistently yielding the highest percentage of performance (80-100%) in all PCM 

materials, and Winter Cloudy conditions yield minimum efficiency (20-40%). 

Most efficient performing PCM investigation indicates that P01 is consistently the best material in Summer Sunny conditions 

and is delivering maximum energy storage of 1.55 × 107𝐽. However, for less favorable conditions (Winter Cloudy, Summer 

Variable, Winter Sunny, and Summer Cloudy), the winner is P04, with energy storage capacities near 7.0 ×  106𝐽. This 

crossover of performance suggests that the PCM choice must be optimized against prevailing environmental conditions at 

the installation site, such that P01 takes the spotlight for high-irradiance sites and P04 provides a consistent performance 

under variable conditions. 

The similar performance between P03 and P04 materials despite different PCM volumes (0.025 m³ vs 0.025 m³) and surface 

areas (2.5 m² vs 2.5 m²) indicates that these particular geometric configurations result in equivalent heat transfer 

characteristics under the tested operating conditions. 

For baseline comparison, a conventional solar water heater without PCM integration achieved maximum energy storage of 

12.3 MJ/kg under identical Summer Sunny conditions, demonstrating the 26% improvement provided by PCM integration 

with material P01. 

4.2 Machine Learning Optimization Performance Evaluation 

Machine learning-optimal control was demonstrated to have measurable improvements in system performance compared to 

conventional control. Figure 7 presents comparative temperature profiles for PCM and water components on the three base 

materials (P01, P02, P03) exposed to identical environmental conditions. The ML-optimized system (red lines) consistently 

exhibits superior thermal response properties compared to the standard technique (blue lines), with notable improvements 

identified during the first heating cycle and steady-state sustaining operations. 

 
Fig. 7: Comparative temperature profiles: (a) P01 PCM and water temperatures, (b) P02 PCM and water temperatures, (c) 

P03 PCM and water temperatures. 

Target temperatures were attained 15-20 minutes earlier with enhanced thermal stability, representing a 2.3% improvement 

in response time relative to the 14-hour operational period, which translates to reduced energy waste and improved user 

comfort during peak demand periods. The upgraded performance is attributed to the sophisticated pump speed modulation, 

which controls heat transfer rates in correlation with real-time thermal conditions. Similarly, P02 demonstrated improved 

thermal stability during the plateau stage (hours 4-6), with the ML system being more stable and oscillating less. The most 

significant gains were demonstrated by P03, where the ML optimization enabled a sustained increase in temperature 

throughout the duration of the 5-hour simulation, indicating greater energy retention capability. 

Performance gains from ML optimization are compared through measurement of energy storage, depicted in Figure 8. The 

cumulative energy storage profiles demonstrate consistent enhancements for the three PCM materials, with ML optimization 

exhibiting higher cumulative energy storage throughout the simulation. P01 achieved a final cumulative energy storage of 
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16.0 𝑀𝐽 under ML optimization compared to 15.5 𝑀𝐽Under standard control, an increase of 3.3%. P02 achieved a 4.1% 

boost (8.08 𝑀𝐽 𝑣𝑠. 7.77 𝑀𝐽), while P03 achieved a 2.5% improvement (7.11 𝑀𝐽 𝑣𝑠. 6.93 𝑀𝐽). 

The breakdown of the energy component suggests that the improvements are mainly a result of more efficient water heating 

and not because of PCM-specific enhancements. The ML optimization maximizes the flow rate of the heat transfer fluid to 

achieve maximum thermal energy harvesting during high-solar-irradiance conditions while minimizing the thermal losses 

during low-irradiance situations. This intelligent control strategy results in optimal utilization of provided solar energy and 

improved overall system performance. 

 
Fig. 8: Cumulative energy storage profiles: (a) P01 energy storage comparison, (b) P02 energy storage comparison, (c) P03 

energy storage comparison 

The rapid energy increase in the final 4 hours occurs during the post-melting phase when the PCM operates in liquid state 

with higher specific heat capacity, while the initial 10-hour period represents the pre-melting and melting transition phases 

where energy is primarily absorbed for phase change rather than temperature increase. 

Analysis of the area under the cumulative energy curves reveals that ML optimization increases total energy storage by 

3.3% on average, with the enhanced control strategy maximizing energy capture during high-irradiance periods while 

minimizing losses during low-irradiance conditions. 

4.3 Quantitative Performance Metrics and Enhancement Factors 

4.3.1 Pumping Energy Consumption Analysis 

ML optimization reduces pumping energy consumption by 12-18% compared to fixed-speed operation. The intelligent flow 

control operates pumps at reduced speeds during low-irradiance periods (0.3-0.6 flow multiplier) while maintaining optimal 

heat transfer rates, resulting in net energy savings despite the 3.3% improvement in thermal performance. 

4.3.2 Performance Enhancement Analysis 

Overall performance evaluation, presented in tabulated form in Table 3, shows consistent improvements in significant 

academic metrics for PCM thermal energy storage systems. The ML optimization yielded between 2.5% and 4.1% energy 

storage improvements across the three tested materials, averaging an increase of 3.3%. These improvements, while 

numerically small, are significant in terms of control optimization with no hardware changes. 

Table 3: PCM Performance Comparison Summary - Key Academic Metrics 

 PCM 

Material  

 Normal 

Energy 

(MJ/kg)  

 ML 

Energy 

(MJ/kg)  

 Energy 

Improvement 

(%)  

 Normal 

Max Water 

T (°C)  

 ML Max 

Water T 

(°C)  

 Water Temp 

Improvement 

(%)  

 Enhancement 

Factor  

 Enhancement 

Improvement 

(%)  

 P01   15.50   16.00   +3.3   49.7   49.9   +0.4   1.03   +3.3  

 P02   7.77   8.08   +4.1   51.0   51.8   +1.6   1.04   +4.0  

 P03   6.93   7.11   +2.5   49.7   49.9   +0.5   1.03   +2.5  

 Average   10.07   10.40   +3.3   50.1   50.5   +0.8   1.03   +3.3  
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The improvement ratios of 1.03 to 1.04 indicate constant improvement in performance for all materials that were tested. The 

ratios are the ratio of ML-optimum to base performance, and values >1.0 indicate better performance. The water temperature 

improvements, while numerically small (0.4% to 1.6%), indicate substantial improvement in real-world applications in which 

even minor temperature increases equate to improved system efficiency and customer comfort. 

Figure 9 is a great representation of the overall enhancement in performance via ML optimization. The increase in energy 

storage demonstrates equivalent enhancements in all three materials, the optimum being P02 at 4.1%. The increase in thermal 

performance as peak water temperature improves reveals more restricted but equivalent gains ranging from 0.4% to 1.6%. 

The representation of heat transfer enhancement factor confirms that all materials are enhanced with the ML optimization, 

and all enhancement factors are greater than 1.0. 

The radar chart presented in Figure 4 visualizes the multi-dimensional performance gains, capturing the total picture of the 

ML optimization advantages. The chart indicates that even though individual metrics register different levels of improvement, 

the general level of improvement is uniform and positive for all the evaluation criteria. This complete improvement picture 

substantiates the efficacy of the ML-based control strategy in optimizing the performance of PCM systems without needing 

physical system changes. 

 
Fig. 9: Multi-dimensional performance gains: (a) Energy storage improvement, (b) Water temperature improvement, (c) 

Heat transfer enhancement factors, (d) Radar chart of overall performance. 

4.4 Comparative Analysis with Related Works 

The performance gains made here must be placed in the broader context of PCM enhancement research to properly assess 

their value and significance to the field. Table 4 provides a comparative summary of various PCM enhancement methods, 

highlighting the significance of the ML-based optimization of control being proposed. 

Table 4: Comprehensive Comparison with Related Works 

 Enhancement 

Category  

 Study/Method   Energy 

Improvement  

 Heat Transfer 

Enhancement  

 Implementation 

Cost  

 Retrofit 

Potential  

 Key 

Advantages  

 Physical 

Enhancement  

 Nanoparticle 

addition (Al₂O₃, 

SiC)  

 Variable   25-32% thermal 

conductivity  

 High   Low   High thermal 

performance  

   Metal wool 

infiltration  

 25% 

productivity  

 4.34 W/m·K 

effective 

conductivity  

 Medium   Low   Cost-effective 

enhancement  

   Fins/Extended 

surfaces  

 System-

dependent  

 30-80% decrease 

in melting time  

 Medium   Low   Well-

established 

technology  

   Shape-stabilized 

PCMs  

 Variable   3-10× rate of 

heat transfer  

 High   Low   No leakage 

problems  
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 Geometric 

Enhancement  

 Wavy surfaces   Variable   Enhanced heat 

transmission  

 High   Very Low   Greater surface 

area  

   Complicated 

geometries  

 Variable   Streamlined flow 

patterns  

 Very High   Very Low   Application-

oriented design  

 System 

Integration  

 CSP applications   10-50% in 

energy savings  

 Variable   Very High   Very Low   High-

temperature 

operation  

   Building 

integration  

 14-90% 

reduction in 

energy  

 Variable   Medium-High   Medium   Passive 

thermal mass  

 Control 

Optimization  

 Existing Research 

(Machine 

Learning-based)  

 +2.5% to +4.1%   1.03-1.04× 

improvement  

 Very Low   Very High   No hardware 

modification  

   Operation 

optimization  

 12.4-22.7% 

efficiency  

 Variable   Low-Medium   High   Improved 

operation  

 

Comparative analysis proves that although physical improvement techniques yield much greater performance improvements 

(25-80%), they incur substantial capital expenditures and are not suited for retrofits to existing systems. The ML-based 

control optimization method proposed has a unique role in the improvement picture, offering incremental but consistent 

improvement with exceptional practical advantages. 

The most significant distinguishing characteristics of the present approach are: (1) No need for hardware alteration, so it is 

convenient to implement on existing systems; (2) Very low implementation cost, consisting of only software changes and 

low-cost sensing instrumentation; (3) Very high retrofit potential, which is ideal for the vast installed base of solar water 

heaters; and (4) Consistency of performance, with consistent improvement over different PCM materials and operating 

conditions. 

Furthermore, the ML-based approach possesses excellent complementary capabilities when paired with physical 

enhancement technologies. For instance, an enhanced system with fins (30-80% improved) would also benefit from ML 

control optimization (3-4% enhanced), producing compounded performance gains. The complementarity renders the 

proposed method a desirable addition to the PCM enhancement toolset rather than a replacement option. 

The moderate performance improvement achieved (2.5-4.1%) is in line with other control optimization studies in the literature 

because operating improvements typically experience smaller absolute improvements compared to physical ones. However, 

the real-world impact of such improvements is captured when one translates the cost-benefit and scalability. The ability to 

realize quantifiable performance enhancements through software-alone improvements is a paradigm shift toward smart 

thermal energy systems that can improve their operation in real time on the basis of environmental conditions and system 

status. 

This paper completes a significant research gap in the PCM literature, where the majority of enhancement studies investigate 

material and geometric modification without looking at the significant optimization potential that may be achieved through 

intelligent control strategies. The gains achieved, as small as they are quantitatively, make important improvements to the 

performance and field implementation of PCM-based solar thermal systems, particularly in missions for high-priority cost-

effectiveness and retrofitting compatibility. 

4.5 Limitations and Future Research Directions 

This study presents several limitations that should be acknowledged. The simulation-based approach, while comprehensive, 

requires validation through experimental testing in real-world installations to confirm the predicted performance 

improvements. The ML model training utilized synthetic optimization targets rather than experimental data, which may not 

fully capture the complexity of actual system dynamics. The study focused on three specific PCM materials with identical 

melting temperatures, limiting the generalizability to other PCM formulations with different thermal properties. 

Future research should prioritize experimental validation of the ML optimization strategy in operational solar water heating 

systems under diverse climatic conditions. Advanced neural network architectures, including recurrent neural networks and 

transformer models, could potentially achieve greater optimization performance. Integration with weather forecasting 

systems would enable predictive control strategies that anticipate environmental conditions. Extension of the methodology 

to other thermal energy storage applications, including building HVAC systems and industrial process heat applications, 

represents significant research opportunities. Development of standardized benchmarking protocols for ML-optimized 

thermal systems would accelerate research progress and facilitate technology transfer to commercial applications. 

5. Conclusion 

This work succeeded in demonstrating the effectiveness of ML-based control optimization of PCM-integrated solar water 

heaters. The ML optimization consistently delivered energy storage improvements of 2.5-4.1% for all the tested 

configurations, with improvement factors larger than 1.03. Numerically small relative to physical enhancement methods 

achieving 25-80% improvements, but of significant practical value are outstanding retrofit compatibility, low cost of 

implementation, and available for immediate deployment without hardware modification. 
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The three-phase mathematical modeling paradigm offers a strong foundation for subsequent PCM research, with 

sophisticated thermal dynamics integrated with automatic phase determination and dynamic solar input estimation. Five 

environmental case validations demonstrate responsiveness under realistic operation, establishing confidence towards real-

world deployment. The software-optimized strategy facilitates compounded benefits by complementing hardware upgrades, 

predicting increased performance potential through integrated strategies. 

Future work must focus on simulation-based testing in actual installations, the design of novel neural network structures for 

improving optimization, integration with weather prediction for predictive control, and extension to other thermal energy 

storage applications such as building HVAC and industrial process heat networks. Benchmarking protocols for ML-optimized 

thermal systems would hasten research progress in this new discipline. 

The demonstrated success can establish a new paradigm for thermal energy storage enhancement on the basis of intelligent 

control strategies that achieve realistic performance improvement deployable from existing infrastructure, thereby facilitating 

accelerated adoption of renewable thermal energy technology. 
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