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Abstract 

The recent advancing of computational resources, led to a significant improvement in histopathological image analysis. These 

improvements helped to diagnosis various diseases and dive into cellular level of the tissue for accurate prognosis. Therefore, 

an automated algorithm is proposed to enhance diagnostic accuracy and efficiency. This paper proposes a detection technique 

to detect the cells nuclei on histopathological images that are stained by Hematoxylin and Eosin (H&E). The proposed 

technique applies multiple thresholds on the grayscale image version of the H&E-stained image and from each resulted binary 

image, several centroids are extracted for each disconnected foreground region. Three measures such as area, centroid 

location, and circularity ratio have been used to determine the selection of nuclei seed. The technique assigns certainty 

weights based on threshold values, enhancing the reliability of detected seeds. Comparisons with existing methods, like the 

generalized Laplacian of Gaussian (gLoG) technique, demonstrate the proposed method’s efficiency and accuracy, providing 

a robust foundation for further segmentation processes. 
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1. Introduction 

Histopathological images, obtained through the microscopic examination of tissue samples, play a critical role in the 

diagnosis and study of diseases such as cancer. These images provide detailed visual information about the cellular and tissue 

structure, enabling pathologists to identify abnormalities and disease states. The significance of histopathological images lies 

in their ability to reveal the morphological characteristics of cells, which are essential for accurate diagnosis, prognosis, and 

treatment planning. However, the manual analysis of these images is time-consuming, labor-intensive, and prone to inter-

observer variability, highlighting the need for automated image processing techniques to assist pathologists and improve 

diagnostic accuracy [1,2]. 

The main challenge in automated techniques that analysis histopathological images directly is the identification and 

segmentation of nuclei in the tissue. The cell nuclei is the most important element in the tissue, where the morphological 

features can be used to define and classify various of cells, and separate them from malignant cells [3,4]. The nuclei 

segmentation can be difficult due the variations of cell in shape, color, size, and staining intensity, as well as the presence of 

overlapping nuclei and artifacts in the images. To overcome these issues, different nuclei segmentation algorithms have been 
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proposed in the literature [5,6]. Most of these algorithms, use a detection of nuclei technique, as a first step, followed by 

nuclei segmentation process   

In the literature, seed detection techniques are a powerful step that can identify cell centers, utilized as starting points for 

more comprehensive segmentation methods. Detecting the cell seeds accurately can be crucial, with traditional method, 

especially when the cells loose the blob shape. In [7], restricted randomized Hough transform is used, to accurately detect 

ellipse shapes on the histopathology images. In [8], an automated seed detection is used to count the cytotoxic T-cells in CD-

8 stained renal biopsy images. The study introduces a method that employs a multi-scale difference of Gaussian technique to 

identify potential T-cells regions in both color and intensity channels of immunostained images. The integration of data from 

these channels enhances the accuracy of cell detection, significantly reducing the time and effort required for manual 

counting. In [9], a novel approach is presented for the automatic detection and segmentation by combining advanced 

techniques like graph-cuts-based binarization, multiscale Laplacian-of-Gaussian filtering, and adaptive scale selection to 

enhance accuracy and efficiency. In [10,11], the authors presents a method for detecting seed nuclei in histopathology images 

using Generalized Laplacian of Gaussian filters to enhance detection accuracy. The technique consist of  several steps such 

as preprocessing, filtering, segmentation, and post-processing to achieve high accuracy and robustness in nuclei detection 

[12-16]. 

The proposed seed detection consists of the following steps. Firstly, convert the input Hematoxylin and Eosin (H&E)-stained 

image into a grayscale image. Secondly, determine the potential nuclei regions by applying multiple thresholds to generate 

multiple binary images to define centroids of ROIs in each binary image. Finally, perform further feature analysis defined by 

area, centroid location, and circularity ratio to determine the seeds accurately. The experimental results show that the 

proposed method is an efficient and adaptable solution for nuclei detection in histopathological images in terms of 

computational complexity and detection accuracy. 

 

2. Proposed Technique 

Seed detection is an important step for many nuclei segmentation techniques. In this section, we propose a technique to detect 

the nuclei seeds in an H&E-stained image of skin tissue. The technique is implemented by applying multiple thresholds on 

the gray scale image. The seed detection process is explained in the following: 

1. The input H&E-stained image is converted into a gray level image. Let the gray level image be denoted by . 

2. A number of thresholds (K) are applied on the image  to obtain K binary images  ( ). The 

threshold values, denoted by , are between and . In this paper,  and . The values 

of the thresholds are selected as: . 

 

 

 
Fig.1. A gray level image G and the obtained binary masks (i.e., foreground regions) .  The mask  is 

obtained by applying threshold . 

G
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Fig.1 shows a synthesized image G (in the top row) with 13 objects of different shapes and sizes. The objects have 

2D gaussian shapes with different  and  values. The next six rows show the binary images  obtained by 

applying 12 different thresholds (K=12) on the image G. Each binary image  includes several disconnected 

foreground regions. Let the number of the disconnected regions be denoted by R. In Fig. 1, R=13 for all . Note 

that the size of the (disconnected) foreground (or mask) regions in ’s vary with  as different thresholds  are 

used to obtain these images. 

3. For each of the R foreground regions (FR) in a , three features: area , centroid location , and circularity 

ratio  are calculated. Note that A equals to the number of pixels in the FR, L is the centroid of the FR, and the 

circularity ratio  of an FR is calculated as follows: 

                                                        

where P is the perimeter of the FR. 

4. In order to detect the seeds, we generate clusters of centroids L corresponding to all FRs from all . A Mean Shift 

technique is applied on the locations L of the K binary images to generate clusters. Let the number of the detected 

clusters be denoted by P (in an ideal case, M should be same as the number of objects in the image). Denote the 

obtained centroid clusters by 
PC  (p=1,2,..,P). The number of centroids (L) in the cluster m can vary, and let it be 

denoted by . An example of the clustering is shown in Fig. 2(b) where M = 13 and  for all m. 

The top row of Fig.2 (b) shows the overlapped boundaries of the FR’s that are obtained from all  -the inner and 

outer boundaries are obtained using the highest and lowest thresholds, respectively. Note that for each object in Fig. 

2(a), there are 12 superimposed boundaries as well as 12 superimposed centroids (some of these centroids are shown 

with red bounding squares). The green rectangular region in Fig.2 (b) shows the boundaries of superimposed masks 

. In Fig.2 (b) bottom row, a blown-up version of these (7) red squares are shown. It is observed that each centroid 

cluster has 12 centroids shown with different color dots. 

5. The FR’s obtained with larger threshold values are likely to be more conservative estimate of the segmented masks. 

Therefore, higher weights may be assigned to these mask estimates. In this work, certainty weights ( ) are 

assigned to the center location (L) of the FR’s depending on the threshold values used. Assume that the 

predetermined range of the  is . The  for threshold  is calculated as follows: 

 

                where  

In this work, . With  and ,  is obtained as 1.63.  

 

6. For each of the M clusters, three parameters: certainty measure ( ), circularity measure ( ), and size 

measure ( ) are calculated. For pth cluster, these parameters are calculated as follows: 

 

Although ideally the clusters should have Note that the clusters may have different numbers of (L).   
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Fig. 2. An example of the proposed Seed Detection process (a) a synthesized image, (b) intermediate results (c) Seed 

detection results. 

 

Fig.3 An example of calculated measures for the synthesized image in Fig.1 (a) Circularity measure, (b) Certainty measure 

(c) Size measure. 

Fig.2 shows the calculated measures of the synthesized image in Fig. 1 for 13 detected seeds. Fig.2 (a) represents the 

circularity measures (CrMs) of all the detected seeds, and it is observed there are 4 have around 13.5 CrM belonged to last 

small four gaussian on the synthesized image in Fig. 1. 

Fig.2 (b) shows the certainty measure of the detected seeds, and it is observed that all seeds have assigned with same certainty 

measure because each seed cluster having same number of centers. In Fig. 2 (c) the size measure is represented for all the 

detected cells, and it is calculated based on the size of a white disconnected region after each threshold. In each cluster will 

have multiple sizes and the minimum value is chosen for presenting the size of that cluster.   
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Fig. 4. Seed Detection results (a) H&E-stained image, (b) intermediate results, where heat colors shades show the certainty 

of the detected seed. 

3. Results 

In this section, we present the subjective comparison between the proposed technique and gLoG technique. Fig. 3, shows the 

detection results of the proposed technique results in (a) and the gLoG technique results in (b). The gLoG technique has many 

disadvantages over the proposed technique including the complexity introduced by number of convolutional operations and 

un-generalized parameters defined with values of  , and . 

 

 

Fig.5 Subjective comparison of Seed detection techniques applied on the synthesized image in Fig.1 (a) proposed 

technique, (b) gLoG technique. 

Let GT, DS and TP denote the numbers of ground truth seeds, detected seeds and true positives seeds, respectively. The 

performance is evaluated with respect to the recall, precision and F-measure which are defined as follows: 
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Table 1 The seed detection performance. 
Techniques recall precision F-Score 

RRHT [7] 72.97 85.94 78.89 

DoG [8] 83.05 80.20 81.53 
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mLoG [9] 88.67 87.08 87.83 

gLoG [11] 89.45 94.20 91.72 

Proposed technique  97.39 95.45 93.33 

 
Table 1 The seed detection performance. 

Techniques recall precision F-Score 

RRHT [7] 72.97 85.94 78.89 

DoG [8] 83.05 80.20 81.53 

mLoG [9] 88.67 87.08 87.83 

gLoG [11] 89.45 94.20 91.72 

Proposed technique  97.39 95.45 93.33 

 

4. Conclusion  

The accurate detection of nuclei seeds is a critical step in the segmentation of histopathological images, significantly 

impacting the diagnosis and treatment of diseases such as cancer. The proposed seed detection algorithm, which employs a 

multi-threshold approach on grayscale images followed by centroid clustering, offers a reliable and efficient solution for 

nuclei segmentation. By calculating and utilizing features like area, centroid location, and circularity ratio, and assigning 

certainty weights to detected seeds, the method ensures high accuracy in identifying true nuclei regions. Subjective 

comparisons with existing techniques, such as the gLoG method, highlight the proposed algorithm's advantages in terms of 

computational efficiency and parameter generalization. This work underscores the potential of advanced image processing 

techniques in enhancing diagnostic capabilities and supports the ongoing development of automated tools for 

histopathological analysis. Future research may focus on further optimizing the algorithm and exploring its applicability to a 

broader range of histopathological datasets.   
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